首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wheat and rye straws were pretreated with ozone to increase the enzymatic hydrolysis extent of potentially fermentable sugars. Through a 2(5-1) factorial design, this work studies the influence of five operating parameters (moisture content, particle size, ozone concentration, type of biomass and air/ozone flow rate) on ozonization pretreatment of straw in a fixed bed reactor under room conditions. The acid insoluble lignin content of the biomass was reduced in all experiments involving hemicellulose degradation. Near negligible losses of cellulose were observed. Enzymatic hydrolysis yields of up to 88.6% and 57% were obtained compared to 29% and 16% in non-ozonated wheat and rye straw respectively. Moisture content and type of biomass showed the most significant effects on ozonolysis. Additionally, ozonolysis experiments in basic medium with sodium hydroxide evidenced a reduction in solubilization and/or degradation of lignin and reliable cellulose and hemicellulose degradation.  相似文献   

2.
The effect of delignification of forest biomass on enzymatic hydrolysis   总被引:1,自引:0,他引:1  
Yu Z  Jameel H  Chang HM  Park S 《Bioresource technology》2011,102(19):9083-9089
The effect of delignification methods on enzymatic hydrolysis of forest biomass was investigated using softwood and hardwood that were pretreated at an alkaline condition followed by sodium chlorite or ozone delignification. Both delignifications improved enzymatic hydrolysis especially for softwood, while pretreatment alone was found effective for hardwood. High enzymatic conversion was achieved by sodium chlorite delignification when the lignin content was reduced to 15%, which is corresponding to 0.30-0.35 g/g accessible pore volume, and further delignification showed a marginal effect. Sample crystallinity index increased with lignin removal, but it did not show a correlation with the overall carbohydrate conversion of enzymatic hydrolysis.  相似文献   

3.
Treatment of wet corn-milling wastewater with filamentous fungi was investigated as a means of obtaining fungal biomass as an additional byproduct. Competitive bacterial growth is a common problem during this nonaseptic treatment process. Selective disinfection with ozone was evaluated for eliminating bacterial populations during fungal cultivation. Three laboratory-scale continuous flow aerated reactors were operated under nonaseptic conditions at 38 degrees C, hydraulic retention time of 8h and pH of 4. The bacterial population was reduced by one log with respect to the control when ozone was dosed at a concentration above 47+/-2mg/L. An ozone dosage of about 57mg/L was found to be most effective in improving both fungal biomass production and soluble chemical oxygen demand (SCOD) removal (up to 90%). Fungal biomass concentration increased from c. 1.45g/L (control) to c. 1.75g/L at a 57-mg/L ozone dosage. Higher and lower dosages of ozone resulted in poorer fungal growth and lower SCOD removal.  相似文献   

4.
Thirty-six F2 hybrid poplar (Populus trichocarpa × P. deltoides) clones were fumigated with ozone to record its effects on growth, correlate them with stomatal response and screen for ozone sensitivity. Fumigation was applied for 6 to 9 h each day for approximately 3 months at ozone concentrations of 85 to 128 μg g−1 using open-top chambers. Height, diameter, number of leaves, stomatal conductance, transpiration rate, total biomass, biomass components and root/shoot ratios were reduced by ozone stress. Percent of leaf fall in ozone-treated plants was nearly three times higher than in control plants exposed to charcoal-filtered air. Leaf senescence, because of ozone exposure, did not appear to be associated with reduced biomass production. Some clones had a high percentage of leaf-fall with ozone exposure, but were able to maintain total biomass production near that of the control. Their response may be an example of an ability to adjust or compensate for ozone damage. There was no significant or consistent relationship between stomatal conductance and total biomass or the change in stomatal conductance as a result of ozone exposure and the change in total biomass. Taken together, these results suggest that effects of ozone on poplar growth cannot be solely correlated to changes in stomatal conductance, more physiological and biochemical parameters should be examined.  相似文献   

5.
臭氧胁迫对水稻生长以及C、N、S元素分配的影响   总被引:7,自引:0,他引:7  
采用开顶式气室(Open-top Chamber, OTC),对水稻"3694繁"(Oryza sativa L., 3694 Fan)在浙江嘉兴进行田间原位臭氧(O3)熏气实验,研究不同臭氧浓度熏气对水稻生长以及C、N,S元素分配的影响。实验设置分4个水平:过滤大气组(CF,10 nL/L)、自然大气组(NF,40 nL/L)和两个不同浓度的臭氧处理组(O3-1:100 nL/L; O3-2:150 nL/L)。主要结果表明:(1)开始臭氧熏气时,各个处理组单茎水稻各组分生物量没有差异. 在熏气后期(水稻成熟期),臭氧处理使单茎水稻根、茎和穗生物量显著下降,根冠比降低,株高显著降低,表明臭氧胁迫增加水稻地上部分的干物质分配,且对株高的影响可能大于对地上生物量的影响;(2)臭氧处理使水稻根和茎C元素含量下降,叶C元素含量上升,表明臭氧胁迫提高了叶片中碳分配,而降低了根和茎的碳分配;(3)各个组分N元素含量上升和碳氮比下降;(4)茎、叶和穗S元素含量上升,可能会增强水稻抗氧化系统的作用,从而抵抗臭氧胁迫。所有实验结果表明臭氧浓度升高会对水稻生长产生严重不利影响,从而导致水稻各个组分的C、N、S元素分配格局发生改变。  相似文献   

6.
The impact of ozone on crops was more studied in C (3) than in C (4) species. In C (3) plants, ozone is known to induce a photosynthesis impairment that can result in significant depressions in biomass and crop yields. To investigate the impact of O (3) on C (4) plant species, maize seedlings ( ZEA MAYS L. cv. Chambord) were exposed to 5 atmospheres in open-top chambers: non-filtered air (NF, 48 nL L (-1) O (3)) and NF supplied with 20 (+ 20), 40 (+ 40), 60 (+ 60), and 80 (+ 80) nL L (-1) ozone. An unchambered plot was also available. Leaf area, vegetative biomass, and leaf dry mass per unit leaf area (LMA) were evaluated 33 days after seedling emergence in OTCs. At the same time, photosynthetic pigments as well as carboxylase (PEPc and Rubisco) activities and amounts were also examined in the 5th leaf. Ozone enhanced visible symptoms characterizing foliar senescence. Across NF, + 20, + 40, and + 60 atmospheres, both chlorophylls and carotenoids were found to be linearly decreased against increasing AOT40 ( CA. - 50 % in + 60). No supplementary decrease was observed between + 60 and + 80. Total above-ground biomass was reduced by 26 % in + 80 atmosphere; leaf dry matter being more depressed by ozone than leaf area. In some cases, LMA index was consistent to reflect low negative effects caused by a moderate increase in ozone concentration. PEPc and Rubisco were less sensitive to ozone than pigments: only the two highest external ozone doses reduced their activities by about 20 - 30 %. These changes might be connected to losses in PEPc and Rubisco proteins that were decreased by about one-third. The underlying mechanisms for these results were discussed with special reference to C (3) species. To conclude, we showed that both light and dark reactions of C (4) photosynthesis can be impaired by realistic ozone doses.  相似文献   

7.
Northern hemispheric background concentrations of ozone are increasing, but few studies have assessed the ecological significance of these changes for grasslands of high conservation value under field conditions. We carried out a 3-year field experiment in which ozone was released at a controlled rate over three experimental transects to produce concentration gradients over the field site, an upland mesotrophic grassland located in the UK. We measured individual species biomass in an annual hay cut in plots receiving ambient ozone, and ambient ozone elevated by mean concentrations of approximately 4 ppb and 10 ppb in the growing seasons of 2008 and 2009. There was a significant negative effect of ozone exposure on herb biomass, but not total grass or legume biomass, in 2008 and 2009. Within the herb fraction, ozone exposure significantly decreased the biomass of Ranunculus species and that of the hemi-parasitic species Rhinanthus minor. Multivariate analysis of species composition, taking into account spatial variation in soil conditions and ozone exposure, showed no significant ozone effect on the grass component. In contrast, by 2009, ozone had become the dominant factor influencing species composition within the combined herb and legume component. Our results suggest that elevated ozone concentrations may be a significant barrier to achieving increased species diversity in managed grasslands.  相似文献   

8.
The primary source of the annual austral spring mid‐tropospheric ozone maxima over the tropical South Atlantic has generally been assumed to be biomass burning. However, ozone precursor emissions from biogenic, lightning, and anthropogenic sources in subequatorial Africa before and during the ozone peak are shown to be comparable, if not greater, in magnitude to regional biomass burning production. Moreover, an investigation of the spatial and temporal characteristics of these ozone precursor sources (i.e. vegetative and microbial activity, lightning‐induced generation, and anthropogenic emissions) suggests that these alternative sources can potentially make a substantial contribution to the seasonal ozone peak. This argument is supported by the practical limitations of atmospheric transport available to regionally produced ozone and ozone precursors.  相似文献   

9.
From sowing, bean (Phaseolus vulgaris L. cv Nerina) plants were exposed to three chronic doses of ozone for 7h.day(-1): non-filtered air (NF), non-filtered air supplied with 40nl.l(-1) ozone (NF+40) and non-filtered air supplied with 60nll(-1) ozone (NF+60). Four harvests were carried out 6, 13, 20 and 27 days after emergence. Either primary leaves, or first trifoliate leaves, or both were sampled as far as possible. For each sampled leaf, visible ozone injuries were registered, the free polyphenolic pool was analysed using HPLC and the dry matter was weighed. Visible damage on leaves was related to both exposure time and ozone concentration added. There were no adverse effects of added ozone on the biomass of primary leaves while a significant reduction of first trifoliates dry matter could be observed (NF+60 atmosphere, third and fourth harvest). Among the normally occurring phenolics, we detected a significant decrease in the accumulation of a hydroxycinnamic acid derivative as the ozone concentration increased. Nevertheless, we demonstrated that this ozone-induced modification could be sometimes distinguishable with difficulties from changes expected to be of development relevance. Beside this phenolic disbalance, we detected a de novo biosynthesis of compounds that closely depended on the level of visible ozone injury. Since their accumulation increased with leaf damage, these ozone-induced phenolics could be used to detect phytotoxic ambient levels of tropospheric ozone.  相似文献   

10.
Potted subterranean clover ( Trifolium subterraneum ) plants of different ages were exposed to 70 nl l−1 ozone for 6 h, either during the light or during the dark period in a laboratory-based climate chamber. There was limited visible leaf injury on plants which were 14–20 and 28–34 d old and no significant decrease in biomass after daytime ozone exposure. The oldest leaves of 22–26 d old plants exhibited severe visible injury, which was associated with a significant reduction in biomass in 24–26 d old plants. Thus, ozone-induced visible injury of different magnitude developed in all plants, but was associated with biomass reduction only during a limited period of the plant's life-span. Apart from modifying ozone uptake by plants, climatic conditions are important as growth modifiers. It is suggested that subterranean clover plants of defined developmental stages should be used in bioindication of ozone. Night ozone exposure injured significantly fewer leaves than day exposure. However, some leaves developed visible injury even after night ozone exposure. Night uptake of ozone may be of more importance in northern than in central and southern Europe, because summer nights are short and, for a certain period, never completely dark.  相似文献   

11.
全球气候变化背景下,我国近地面臭氧浓度不断增加,已严重威胁到森林生态系统。但是,目前臭氧污染影响我国亚热带森林生物量的研究仍然具有较高的不确定性。本研究比较了不同模型和不同参数化方案评估的鼎湖山森林和林下草地生物量损失率的差别,比较了鼎湖山阔叶林和针叶林以及林下草地的生物量损失率与总初级生产力(GPP)损失率的一致性。2015—2016年臭氧污染造成的鼎湖山阔叶林生物量损失率为11.3%—11.69%,针叶林生物量损失率为3.97%—3.68%,草地生物量损失11.2%—14.6%;不同参数化方案估计的鼎湖山阔叶林的生物量损失率在9%—13%之间,针叶林的生物量损失率在3.68%—4.4%之间变化,草地在11.2%—14.6%之间。基于臭氧剂量响应关系模型估算的阔叶林GPP损失率为10%—12.6%,针叶林GPP损失率为1.81%—2.6%,草地GPP损失率为3.2%—3.3%。总的来看,鼎湖山阔叶林和针叶林的生物量和GPP损失具有较高的一致性,阔叶林生物量和GPP的损失率明显高于针叶林生物量和GPP的损失率。  相似文献   

12.
Structural features affecting biomass enzymatic digestibility   总被引:3,自引:0,他引:3  
The rate and extent of enzymatic hydrolysis of lignocellulosic biomass highly depend on enzyme loadings, hydrolysis periods, and structural features resulting from pretreatments. Furthermore, the influence of one structural feature on biomass digestibility varies with the changes in enzyme loading, hydrolysis period and other structural features as well. In this paper, the effects of lignin content, acetyl content, and biomass crystallinity on the 1-, 6-, and 72-h digestibilities with various enzyme loadings were investigated. To eliminate the cross effects among structural features, selective pretreatment techniques were employed to vary one particular structural feature during a pretreatment, while the other two structural features remained unchanged. The digestibility results showed that lignin content and biomass crystallinity dominated digestibility whereas acetyl content had a lesser effect. Lignin removal greatly enhanced the ultimate hydrolysis extent. Crystallinity reduction, however, tremendously increased the initial hydrolysis rate and reduced the hydrolysis time or the amount of enzyme required to attain high digestibility. To some extent, the effects of structural features on digestibility were interrelated. At short hydrolysis periods, lignin content was not important to digestibility when crystallinity was low. Similarly, at long hydrolysis periods, crystallinity was not important to digestibility when lignin content was low.  相似文献   

13.
Fruiting and deblossomed plants of strawberry ( Fragaria × ananassa ) were exposed to 92 ppb ozone or filtered air in open-top chambers for 69 d. Flower and fruit production, relative growth rate of leaf area, leaf gas exchange and plant biomass were investigated. Ozone caused an initial acceleration in inflorescence production, which was followed by a reduction in inflorescence production, fruit set, and, later, individual fruit weight, although total fruit yield was not affected before the end of the fumigation period. Ozone accelerated leaf senescence and had a greater negative effect on the rate of photosynthesis in older than in younger leaves in fruiting and deblossomed plants, but the response of net photosynthesis to ozone did not differ between the two groups of plants. Relative growth rate of leaf area was the first parameter to be reduced by ozone fumigation, with the effect being significant in fruiting, but not in deblossomed, plants. Final above-ground biomass was also significantly decreased by ozone in fruiting plants, but not in deblossomed plants. Root and crown biomass were not significantly affected by ozone fumigation in either fruiting or deblossomed plants.  相似文献   

14.
Studies on enzymatic hydrolysis of cell proteins in green microalgae Chlorella vulgaris 87/1 are described. Different proteases can be used for production of hydrolysates from ethanol extracted algae. The influence of reaction parameters on hydrolysis of extracted biomass with pancreatin was considered, and the composition of hydrolysates (Cv-PH) was investigated in relation to the starting materials. Significant changes in the degree of hydrolysis were observed only during the first 2h and it remained constant throughout the process. An enzyme-substrate ratio of 30-45 units/g algae, an algae concentration of 10-15% and pH values of 7.5-8.0 could be recommended. Differences in the chromatographic patterns of Cv-PH and a hot-extract from Chlorella biomass were observed. Adequate amounts of essential amino acids (44.7%) in relation to the reference pattern of FAO for human nutrition were found, except for sulfur amino acids. Cv-PH could be considered as a potential ingredient in the food industry.  相似文献   

15.
Short-term exposure to 0.5 parts per million (ppm) ozone has been shown to cause an increase in respiratory resistance in primates that can be diminished by 50% with pretreatment with cromolyn sodium. Because of the known membrane-stabilizing effects of cromolyn and the resultant inhibition of mediator production, we hypothesized a role for the products of arachidonic acid (AA) metabolism in these events. We exposed five adult male baboons to 0.5 ppm ozone on two occasions, once with cromolyn pretreatment and once without. Pulmonary resistance (RL) was monitored and bronchoalveolar lavage (BAL) was performed before and after each exposure. The BAL was analyzed for a stable hydrolysis product of prostacyclin, 6-keto-prostaglandin (PG) F1 alpha, PGE2, a stable hydrolysis product of thromboxane (Tx) A2, TxB2, and PGF2 alpha. RL increased after ozone exposure (1.62 +/- 0.23 to 3.77 +/- 0.51 cmH2O.l-1.s, difference 2.15; P less than 0.02), and this effect was partially blocked by cromolyn (1.93 +/- 0.09 to 3.18 +/- 0.40 cmH2O.l-1.s, difference 1.25; P less than 0.02). The base-line levels of the metabolites of AA in the BAL were as follows (in pg/ml): 6-keto-PGF1 alpha 72.78 +/- 12.6, PGE2 145.92 +/- 30.52, TxB2 52.52 +/- 9.56, and PGF2 alpha 22.28 +/- 5.42. Ozone exposure had no effect on the level of any of these prostanoids (P = NS). These studies quantify the magnitude of cyclooxygenase products of AA metabolism in BAL from baboon lungs and demonstrate that changes in the levels of these mediators in BAL are not prerequisites for ozone-induced increases in respiratory resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Usov  A. I. 《Hydrobiologia》1993,(1):641-645
Complete acid hydrolysis of red algal galactans in the presence of borane - 4-methylmorpholine complex has been shown to prevent the acid degradation of 3,6-anhydrogalactose derivatives by their reduction to the corresponding 3,6-anhydro-galactitols, whereas all the other monosaccharides are liberated essentially in the non-reduced form; the reductive hydrolysis products may be determined quantitatively using gas-liquid chromatography (GLC). The method is recommended for preliminary characterization of the polysaccharide composition of red algal biomass. Partial acid hydrolysis of galactans in the presence of the same reducing agent gives rise to reduced oligosaccharides having terminal 3,6-anhydrogalactitol residues. Based on this reaction, the attribution of unknown galactans to the agar or carrageenan groups is possible by partial reductive hydrolysis of small samples of algal biomass with subsequent identification of agarobiitol or carrabiitol acetates by GLC. Sulfate groups are substantially retained under partial reductive hydrolysis conditions; the isolation by liquid chromatography and elucidation of structures of reduced sulfated oligosaccharides may be of great value for the structural analysis of complex red algal galactans.  相似文献   

17.
In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.  相似文献   

18.
The influence of long-term chronic ozone exposure on carbon fluxes from young beech trees (Fagus sylvatica L.) into the phospholipid fraction of microbial communities (PLFA) in the rhizosphere and into the dissolved organic carbon (DOC) fraction was studied in a lysimeter experiment using 13C depleted CO2 over one vegetation period to identify possible changes in below ground carbon translocation processes due to the plant stress. It could be shown that microbial biomass as well as individual microbial communities and their activity pattern in the rhizosphere of young beech trees are mainly driven by the vegetation period. An increase in total microbial biomass as well as individual microbial communities was detected during the vegetation period from June to September. However, also a clear ozone effect was visible mainly at the end of the vegetation period. Enzyme activities and PLFA data indicated earlier induced plant senescence as a response to the elevated ozone treatment. Furthermore higher microbial biomass and abundance of plant C utilizing microbes was observed in elevated ozone treatments over the whole vegetation period.  相似文献   

19.
Evidence regarding the interaction of ultraviolet-B (UV-B, 280-320 nm) radiation and plant competition in terrestrial ecosystems is examined. The competitive interactions of some species pairs were affected even by ambient solar UV-B radiation (as exists without ozone depletion), when compared to control pairs grown without UV-B. Also, the total shoot biomass of these species pairs was depressed under ambient UV-B. Relatively large increases in UV-B radiation (approximating a 40% ozone layer reduction when weighted with the generalized plant action spectrum) altered the competitive interactions of some species pairs grown in pots under field conditions, but did not affect the total shoot biomass production of those pairs. Recent field experiments have examined the competitive interactions of wheat ( Triticum aestivum L. cv. Bannock) and wild oat ( Avena fatua L.) under a simulated increased UV-B regime resulting from a 16% ozone layer reduction when weighted with the generalized plant action spectrum. This increase in UV-B altered the competitive interactions of these two species without affecting the total shoot biomass production of the species pair. The manner in which increased UV-B affected the relative competitive abilities of the two species was highly dependent upon the environmental conditions during the early life stages of the plants. The implications of these results for both agricultural and natural plant communities are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号