首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Prion diseases such as Creutzfeldt-Jakob disease (CJD) in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals are associated with the accumulation in affected brains of a conformational isomer (PrP(Sc)) of host-derived prion protein (PrP(C)). According to the protein-only hypothesis, PrP(Sc) is the principal or sole component of transmissible prions. The conformational change known to be central to prion propagation, from a predominantly alpha-helical fold to one predominantly comprising beta structure, can now be reproduced in vitro, and the ability of beta-PrP to form fibrillar aggregates provides a plausible molecular mechanism for prion propagation. The existence of multiple prion strains has been difficult to explain in terms of a protein-only infectious agent but recent studies of human prion diseases suggest that strain-specific phenotypes can be encoded by different PrP conformations and glycosylation patterns. The experimental confirmation that a novel form of human prion disease, variant CJD, is caused by the same prion strain as cattle BSE, has highlighted the pressing need to understand the molecular basis of prion propagation and the transmission barriers that limit their passage between mammalian species. These and other advances in the fundamental biology of prion propagation are leading to strategies for the development of rational therapeutics.  相似文献   

2.

Background

Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne transmission of prions from slaughtered cattle with classical Bovine Spongiform Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic in aging cattle, were recently identified at slaughterhouses throughout Europe and North America, raising a question about human susceptibility to these new prion strains.

Methodology/Principal Findings

Brain homogenates from cattle with classical BSE and atypical (BASE) infections were inoculated intracerebrally into cynomolgus monkeys (Macacca fascicularis), a non-human primate model previously demonstrated to be susceptible to the original strain of cBSE. The resulting diseases were compared in terms of clinical signs, histology and biochemistry of the abnormal prion protein (PrPres). The single monkey infected with BASE had a shorter survival, and a different clinical evolution, histopathology, and prion protein (PrPres) pattern than was observed for either classical BSE or vCJD-inoculated animals. Also, the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine.

Conclusion/Significance

Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.  相似文献   

3.
Production of cattle lacking prion protein   总被引:14,自引:0,他引:14  
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.  相似文献   

4.
Creutzfeldt-Jakob disease (CJD) is a transmissible neurodegenerative disease of humans caused by an unidentified infectious agent, the prion. To determine whether there was an involvement of the host-encoded prion protein (PrPc) in CJD development and prion propagation, mice heterozygous (PrP+/-) or homozygous (PrP-/-) for a disrupted PrP gene were established and inoculated with the mouse-adapted CJD agent. In keeping with findings of previous studies using other lines of PrP-less mice inoculated with scrapie agents, no PrP-/- mice showed any sign of the disease for 460 days after inoculation, while all of the PrP+/- and control PrP+/+ mice developed CJD-like symptoms and died. The incubation period for PrP+/- mice, 259 +/- 27 days, was much longer than that for PrP+/+ mice, 138 +/- 12 days. Propagation of the prion was barely detectable in the brains of PrP-/- mice and was estimated to be at a level at least 4 orders of magnitude lower than that in PrP+/+ mice. These findings indicate that PrPc is necessary for both the development of the disease and propagation of the prion in the inoculated mice. The proteinase-resistant PrP (PrPres) was undetectable in the brain tissues of the inoculated PrP-/- mice, while it accumulated in the affected brains of PrP+/+ and PrP+/- mice. Interestingly, the maximum level of PrPres in the brains of PrP+/- mice was about half of the level in the similarly affected brains of PrP+/+ mice, indicating that PrPres accumulation is restricted by the level of PrPc.  相似文献   

5.
《朊病毒》2013,7(1):61-68
We previously reported that some cattle affected by bovine spongiform encephalopathy (BSE) showed distinct molecular features of the protease-resistant pion protein (PrPres ) in Western blot, with a 1-2 kDa higher apparent molecular mass of the unglycosylated PrPres associated with labelling by antibodies against the 86-107 region of the bovine PrP protein (H-type BSE). By Western blot analyses of PrPres, we now showed that the essential features initially described in cattle were observed with a panel of different antibodies and were maintained after transmission of the disease in C57Bl/6 mice. In addition, antibodies against the C-terminal region of PrP revealed a second, more C-terminally cleaved, form of PrPres (PrPres #2), which, in unglycosylated form, migrated as a ≈ 14 kDa fragment. Furthermore, a PrPres fragment of ≈ 7kDa, which was not labelled by C-terminus-specific antibodies and was thus presumed to be a product of cleavage at both N- and C-terminal sides of PrP protein, was also detected. Both PrPres #2 and ≈ 7 kDa PrPres were detected in cattle and in C57Bl/6 infected mice. These complex molecular features are reminiscent of findings reported in human prion diseases. This raises questions regarding the respective origins and pathogenic mechanisms in prion diseases of animals and humans.  相似文献   

6.
7.
Variant Creutzfeldt-Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrP(Sc) type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.  相似文献   

8.
A fundamental event in the pathogenesis of prion disease is the conversion of PrP(C), a normal glycophosphatidyl-anchored glycoprotein, into an infectious isoform designated PrP(Sc). In a modified version of the protein misfolding cyclic amplification (PMCA) technique [Saborio et al. (2001) Nature 411, 810-813], protease-resistant PrP(Sc)-like molecules (PrPres) can be amplified in vitro in a species- and strain-specific manner from crude brain homogenates, providing a biochemical model of the prion conversion reaction [Lucassen et al. (2003) Biochemistry 42, 4127-4135]. In this study, we investigated the ability of enriched membrane subsets and detergent-solubilized membrane preparations to support PrPres amplification. Membrane fractionation experiments showed that purified synaptic plasma membrane preparations enriched in PrP(C) but largely depleted of late endosomal and lysosomal markers were sufficient to support PrPres amplification. Detergent solubilization experiments showed that a small group of select detergents could be used to produce soluble preparations that contain PrP(C) and fully support PrPres amplification. The stability of PrPres amplification ability in detergent-solubilized supernatants was dependent on detergent concentration. These results lead to the surprising conclusion that membrane attachment is not required for PrP(C) to convert efficiently into PrPres in vitro and also indicate that biochemical purification of PrPres amplification factors from brain homogenates is a feasible approach.  相似文献   

9.
The neuropathological features human prion diseases comprise spongiform change, neuronal loss, astrocytic and microglial proliferation and the accumulation of the abnormal isoform of prion protein (PrPRES) in the central nervous system. Variant Creutzfeldt-Jakob disease (CJD) is a novel human prion disease which appears to result from infection by the bovine spongiform encephalopathy (BSE) agent. The neuropathology of variant CJD shows morphological and immunocytochemical characteristics distinct from all other types of human prion disease, and is characterised by abundant florid and cluster plaques in the cerebrum and cerebellum, and widespread accumulation of PrPRES on immunocytochemistry. Spongiform change is most marked in the caudate nucleus and putamen, and the thalamus exhibits severe neuronal loss and gliosis, which is most marked in the posterior nuclei and correlates with the areas of high signal seen in the posterior thalamus on MRI examination of the brain. Western blot analysis of PrPRES on frozen brain tissue in variant CJD tissue shows a uniform isotype, with a glycoform ratio distinct from sporadic CJD. PrPRES accumulation is widespread in lymphoid tissues in vCJD. All cases of variant CJD are methionine homozygotes at codon 129 of the PrP gene. Histological and biochemical techniques will be required to identify cases of 'human BSE' in individuals who are MV or VV at codon 129 of the PrP gene. Continued surveillance is required to investigate this possibility in the UK and other countries where BSE has been reported.  相似文献   

10.
Human CJD, endemic sheep scrapie, epidemic bovine spongiform encephalopathy (BSE), and other transmissible spongiform encephalopathies (TSEs), are caused by a group of related but molecularly uncharacterized infectious agents. The UK‐BSE agent infected many species, including humans where it causes variant CJD (vCJD). As in most viral infections, different TSE disease phenotypes are determined by both the agent strain and the host species. TSE strains are most reliably classified by incubation time and regional neuropathology in mice expressing wild‐type (wt) prion protein (PrP). We compared vCJD to other human and animal derived TSE strains in both mice and neuronal cultures expressing wt murine PrP. Primary and serial passages of the human vCJD agent, as well as the highly selected mutant 263K sheep scrapie agent, revealed profound strain‐specific characteristics were encoded by the agent, not by host PrP. Prion theory posits that PrP converts itself into the infectious agent, and thus short incubations require identical PrP sequences in the donor and recipient host. However, wt PrP mice injected with human vCJD brain homogenates showed dramatically shorter primary incubation times than mice expressing only human PrP, a finding not in accord with a PrP species barrier. All mouse passage brains showed the vCJD agent derived from a stable BSE strain. Additionally, both vCJD brain and monotypic neuronal cultures produced a diagnostic 19 kDa PrP fragment previously observed only in BSE and vCJD primate brains. Monotypic cultures can be used to identify the intrinsic, strain‐determining molecules of TSE infectious particles. J. Cell. Biochem. 106: 220–231, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Human prion diseases, such as Creutzfeldt-Jakob disease (CJD), are neurodegenerative and fatal. Sporadic CJD (sCJD) can be transmitted between humans through medical procedures involving highly infected organs, such as the central nervous system. However, in variant CJD (vCJD), which is due to human contamination with the bovine spongiform encephalopathy (BSE) agent, lymphoreticular tissue also harbors the transmissible spongiform encephalopathy-associated prion protein (PrP(TSE)), which poses a particularly acute risk for iatrogenic transmission. Two blood transfusion-related cases are already documented. In addition, the recent observation of PrP(TSE) in spleen and muscle in sCJD raised the possibility that peripheral PrP(TSE) is not limited to vCJD cases. We aimed to clarify the peripheral pathogenesis of human TSEs by using a nonhuman primate model which mimics human diseases. A highly sensitive enzyme-linked immunosorbent assay was adapted to the detection of extraneural PrP(TSE). We show that affected organs can be divided into two groups. The first is peripheral organs accumulating large amounts of PrP(TSE), which represent a high risk of iatrogenic transmission. This category comprises only lymphoreticular organs in the vCJD/BSE model. The second is organs with small amounts of PrP(TSE) associated with nervous structures. These are the muscles, adrenal glands, and enteric nervous system in the sporadic, iatrogenic, and variant CJD models. In contrast to the first set of organs, this low level of tissue contamination is not strain restricted and seems to be linked to secondary centrifugal spread of the agent through nerves. It might represent a risk for iatrogenic transmission, formerly underestimated despite previous reports of low rates of transmission from peripheral organs of humans to nonhuman primates (5, 10). This study provides an additional experimental basis for the classification of human organs into different risk categories and a rational re-evaluation of current risk management measures.  相似文献   

12.
Bovine spongiform encephalopathy (BSE), a member of the prion diseases, is a fatal neurodegenerative disorder suspected to be caused by a malfunction of prion protein (PrP). Although BSE prions have been reported to be transmitted to a wide range of animal species, dogs and hamsters are known to be BSE-resistant animals. Analysis of canine and hamster PrP could elucidate the molecular mechanisms supporting the species barriers to BSE prion transmission. The structural stability of 6 mammalian PrPs, including human, cattle, mouse, hamster, dog and cat, was analyzed. We then evaluated intramolecular interactions in PrP by fragment molecular orbital (FMO) calculations. Despite similar backbone structures, the PrP side-chain orientations differed among the animal species examined. The pair interaction energies between secondary structural elements in the PrPs varied considerably, indicating that the local structural stabilities of PrP varied among the different animal species. Principal component analysis (PCA) demonstrated that different local structural stability exists in bovine PrP compared with the PrP of other animal species examined. The results of the present study suggest that differences in local structural stabilities between canine and bovine PrP link diversity in susceptibility to BSE prion infection.  相似文献   

13.
The characteristic of transmissible spongiform encephalopathies (TSE) is an accumulation of partially protease resistant (PrP(res)) abnormal prion protein (PrP(sc)). This pathological prion protein is very resistant to conventional inactivation methods. The risk of transmission of TSE, such as Creutzfeldt-Jakob disease (CJD), by biopharmaceutical products prepared from human cells must be taken into account. The nanofiltration process has been proved to be effective in removing viruses and scrapie agent. The major advantages of this technique are flexibility and efficacy in removing infectious particles without altering biopharmaceutical characteristics and properties. This study focused on the removal of human PrP(sc) by means of a nanofiltration method after spiking a Lymphoglobuline solution with a CJD brain homogenate. Lymphoglobuline equine anti-human thymocyte immunoglobulin is a selective immunosuppressive agent acting mainly on human T lymphocytes. The therapeutic indications are: immunosuppression for transplantation: prevention and treatment of graft rejection; treatment of aplastic anemia. In our study, CJD homogenate was spiked at three different dilutions (low, moderate and high) in the Lymphoglobuline product. The nanofiltration process was performed on each sample. Using the western blot technique, the PrP(res) signal detected in nanofiltrates was compared to that obtained with a reference scale (dilution series of CJD brain homogenate in Lymphoglobuline detected by western blot and elaborated on 3.3 log). After nanofiltration, the PrP(res) western blot signal was detected with a significant reduction in the less dilute sample, whereas the signal was undetectable in the two other samples. These are the first data in CJD demonstrating a clearance between 1.6 and 3.3 log with a Lymphoglobuline recovery of over 93%. The nanofiltration process confirms its relative efficacy in removing human CJD PrP(sc).  相似文献   

14.
Transmissible spongiform encephalopathies (TSE) or prion diseases are neurodegenerative disorders associated with conversion of normal host prion protein (PrP) to a misfolded, protease-resistant form (PrPres). Genetic variations of prion protein in humans and animals can alter susceptibility to both familial and infectious prion diseases. The N171S PrP polymorphism is found mainly in humans of African descent, but its low incidence has precluded study of its possible influence on prion disease. Similar to previous experiments of others, for laboratory studies we created a transgenic model expressing the mouse PrP homolog, PrP-170S, of human PrP-171S. Since PrP polymorphisms can vary in their effects on different TSE diseases, we tested these mice with four different strains of mouse-adapted scrapie. Whereas 22L and ME7 scrapie strains induced typical clinical disease, neuropathology and accumulation of PrPres in all transgenic mice at 99-128 average days post-inoculation, strains RML and 79A produced clinical disease and PrPres formation in only a small subset of mice at very late times. When mice expressing both PrP-170S and PrP-170N were inoculated with RML scrapie, dominant-negative inhibition of disease did not occur, possibly because interaction of strain RML with PrP-170S was minimal. Surprisingly, in vitro PrP conversion using protein misfolding cyclic amplification (PMCA), did not reproduce the in vivo findings, suggesting that the resistance noted in live mice might be due to factors or conditions not present in vitro. These findings suggest that in vivo conversion of PrP-170S by RML and 79A scrapie strains was slow and inefficient. PrP-170S mice may be an example of the conformational selection model where the structure of some prion strains does not favor interactions with PrP molecules expressing certain polymorphisms.  相似文献   

15.
Previous studies using post-mortem human brain extracts demonstrated that PrP in Creutzfeldt-Jakob disease (CJD) brains is cleaved by a cellular protease to generate a C-terminal fragment, referred to as C2, which has the same molecular weight as PrP-(27-30), the protease-resistant core of PrP(Sc) (1). The role of this endoproteolytic cleavage of PrP in prion pathogenesis and the identity of the cellular protease responsible for production of the C2 cleavage product has not been explored. To address these issues we have taken a combination of pharmacological and genetic approaches using persistently infected scrapie mouse brain (SMB) cells. We confirm that production of C2 is the predominant cleavage event of PrP(Sc) in the brains of scrapie-infected mice and that SMB cells faithfully recapitulate the diverse intracellular proteolytic processing events of PrP(Sc) and PrP(C) observed in vivo. While increases in intracellular calcium (Ca(2+)) levels in prion-infected cell cultures stimulate the production of the PrP(Sc) cleavage product, pharmacological inhibitors of calpains and overexpression of the endogenous calpain inhibitor, calpastatin, prevent the production of C2. In contrast, inhibitors of lysosomal proteases, caspases, and the proteasome have no effect on C2 production in SMB cells. Calpain inhibition also prevents the accumulation of PrP(Sc) in SMB and persistently infected ScN2A cells, whereas bioassay of inhibitor-treated cell cultures demonstrates that calpain inhibition results in reduced prion titers compared with control-treated cultures assessed in parallel. Our observations suggest that calpain-mediated endoproteolytic cleavage of PrP(Sc) may be an important event in prion propagation.  相似文献   

16.
Subclinical prion infection   总被引:5,自引:0,他引:5  
Prion diseases are transmissible neurodegenerative disorders that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt–Jakob disease (CJD) in humans. The principal component of the infectious agent responsible for these diseases appears to be an abnormal isoform of the host-encoded prion protein (PrP), designated PrPSc. Prion diseases are transmissible to the same or different mammalian species by inoculation with, or dietary exposure to, infected tissues. Although scrapie in sheep has been recognized for over 200 years, it is the recent epidemic of BSE that has centred much public and scientific attention on these neurodegenerative diseases. The occurrence of variant CJD in humans and the experimental confirmation that it is caused by the same prion strain as BSE has highlighted the need for intensive study into the pathogenesis of these diseases and new diagnostic and therapeutic approaches. The existence and implications of subclinical forms of prion disease are discussed.  相似文献   

17.
In prion disease, the abnormal conformer of the cellular prion protein, PrP(Sc), deposits in fibrillar protein aggregates in brain and other organs. Limited exposure of PrP(Sc) to proteolytic digestion in vitro generates a core fragment of 19-21 kDa, named PrP27-30, which is also found in vivo. Recent evidence indicates that abnormal truncated fragments other than PrP27-30 may form in prion disease either in vivo or in vitro. We characterized a novel protease-resistant PrP fragment migrating 2-3 kDa faster than PrP27-30 in Creutzfeldt-Jakob disease (CJD) brains. The fragment has a size of about 18.5 kDa when associated with PrP27-30 type 1 (21 kDa) and of 17 kDa when associated with type 2 (19 kDa). Molecular mass and epitope mapping showed that the two fragments share the primary N-terminal sequence with PrP27-30 types 1 and 2, respectively, but lack a few amino acids at the very end of C terminus together with the glycosylphosphatidylinositol anchor. The amounts of the 18.5- or 17-kDa fragments and the previously described 13-kDa PrP(Sc) C-terminal fragment relatively to the PrP27-30 signal significantly differed among CJD subtypes. Furthermore, protease digestion of PrP(Sc) or PrP27-30 in partially denaturing conditions generated an additional truncated fragment of about 16 kDa only in typical sporadic CJD (i.e. MM1). These results show that the physicochemical heterogeneity of PrP(Sc) in CJD extends to abnormal truncated forms of the protein. The findings support the notion of distinct structural "conformers" of PrP(Sc) and indicate that the characterization of truncated PrP(Sc) forms may further improve molecular typing in CJD.  相似文献   

18.
Prions, which mainly consist of the scrapie isoform of the prion protein (PrP(Sc)), induce the misfolding of the physiological prion protein (PrP(C)). The Protein Misfolding Cyclic Amplification (PMCA), a process consisting of sonication and incubation, is one of the few methods thought to model autocatalytic prion replication and generation of proteinase K (PK)-resistant PrP (PrPres) in vitro. Here we show for the first time that the amplification may be achieved through direct as well as indirect sonication (water bath sonication using sealed sample containers), allowing the PMCA method to be automated. The automated method may serve as a valuable tool in high throughput screening for the diagnosis or compound identification for treatment of prion disease. The in vitro amplification process is weakly facilitated by divalent cations such as Mn, Zn and Ni, but not Cu, however, the presence of metal ions decreases the stability of PrPres against proteinase K digestion.  相似文献   

19.
Little is currently known about the biochemical mechanism by which induced prion protein (PrP) conformational change occurs during mammalian prion propagation. In this study, we describe the reconstitution of PrPres amplification in vitro using partially purified and synthetic components. Overnight incubation of purified PrP27-30 and PrPC molecules at a molar ratio of 1:250 yielded approximately 2-fold baseline PrPres amplification. Addition of various polyanionic molecules increased the level of PrPres amplification to approximately 10-fold overall. Polyanionic compounds that stimulated purified PrPres amplification to varying degrees included synthetic, homopolymeric nucleic acids such as poly(A) and poly(dT), as well as non-nucleic acid polyanions, such as heparan sulfate proteoglycan. Size fractionation experiments showed that synthetic poly(A) polymers must be >0.2 kb in length to stimulate purified PrPres amplification. Thus, one possible set of minimal components for efficient conversion of PrP molecules in vitro may be surprisingly simple, consisting of PrP27-30, PrPC, and a stimulatory polyanionic compound.  相似文献   

20.
Eleven Microcebus murinus (lemur) primates were intracerebrally or orally infected by bovine spongiform encephalopathy (BSE) or macaque-adapted BSE (MBSE) brain homogenates. In many BSE and MBSE infected lemurs, but not in animals inoculated with normal bovine brain, persistent behavioral changes occurred as early as 3 months, and neurological signs as early as 13 months after infection. Immunohistochemical examination of animals sacrificed during the incubation period revealed an abnormal accumulation of 'prion' protein (PrP) in the intestinal wall, intestinal nervous plexus, mesenteric lymph nodes and spleen, and in the clinical stage, also in the brain. In MBSE-inoculated animals, proteinase K resistance of the PrP (PrPres) was confirmed by Western blot in the spleen and the brain. Obvious signs of neurodegeneration were observed in all infected animals characterized by hyperaggregated and paired-helical filaments-immunoreactive Tau proteins, beta 42-amyloid plaques and astrogliosis. Additionally, PrPres was present in the ganglion cells of the retina in diseased animals after either intracerebrally or oral infection by the BSE or MBSE agent. These results show that the microcebe is susceptible to the BSE infectious agent via intracerebral and oral routes with comparatively short incubation periods compared to simians, and could be a useful animal model to study the pathophysiology of disease transmission in primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号