首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Screening of a mutagenized strain carrying a multicopy ENO1-'lacZ fusion plasmid revealed a new mutation affecting several glycolytic enzyme activities. The recessive single nuclear gene mutation, named gcr3, caused an extremely defective growth phenotype on fermentable carbon sources such as glucose, while growth on respiratory media was almost normal. The GCR3 gene was obtained by growth complementation from a genomic DNA library, and the complemented strains had normal enzyme levels. GCR3 gene was sequenced, and a 99,537-Da protein was predicted. The predicted GCR3 protein was fairly acidic (net charge, -34). The C-terminal region was highly charged, and an acidic stretch was found in it.  相似文献   

2.
Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1 leads to a pleiotropic phenotype that includes the constitutive presence of peroxisomes and peroxisomal enzymes in glucose-grown cells. Glucose transport and repression defects in a UV-induced gcr1-2 mutant were found to result from a missense point mutation that substitutes a serine residue (Ser(85)) with a phenylalanine in the second predicted transmembrane segment of the Gcr1 protein. In addition to glucose, mannose and trehalose fail to repress the peroxisomal enzyme, alcohol oxidase in gcr1-2 cells. A mutant deleted for the GCR1 gene was additionally deficient in fructose repression. Ethanol, sucrose, and maltose continue to repress peroxisomes and peroxisomal enzymes normally and therefore, appear to have GCR1-independent repression mechanisms in H. polymorpha. Among proteins of the hexose transporter family of baker's yeast, Saccharomyces cerevisiae, the amino acid sequence of the H. polymorpha Gcr1 protein shares the highest similarity with a core region of Snf3p, a putative high affinity glucose sensor. Certain features of the phenotype exhibited by gcr1 mutants suggest a regulatory role for Gcr1p in a repression pathway, along with involvement in hexose transport.  相似文献   

3.
4.
5.
Screening of a mutagenized strain carrying a multicopy ENO1-'lacZ fusion plasmid revealed a new mutation affecting most glycolytic enzyme activities in a pattern resembling that caused by gcr1: levels in the range of 10% of wild-type levels on glycerol plus lactate but somewhat higher on glucose. The recessive single nuclear gene mutation, named gcr2-1, was unlinked to gcr1, and GCR1 in multiple copies did not restore enzyme levels. GCR2 was obtained by complementation from a YCp50 genomic library; the complemented strain had normal enzyme levels, as did a strain with GCR2 in multiple copies. GCR2 in multiple copies did not suppress gcr1. A chromosomal gcr2 null mutant was constructed; its pattern of enzyme activities resembled that of the gcr2-1 mutant and, like the gcr2-1 mutant, its growth defect on glucose was only partial (in contrast to the glucose negativity of the gcr1 mutant). Northern (RNA) analysis showed that gcr2 and gcr1 affect ENO1 mRNA levels.  相似文献   

6.
7.
8.
H. Uemura  M. Koshio  Y. Inoue  M. C. Lopez    H. V. Baker 《Genetics》1997,147(2):521-532
To study the interdependence of Gcr1p and Rap1p, we prepared a series of synthetic regulatory sequences that contained various numbers and combinations of CT-boxes (Gcr1p-binding sites) and RPG-boxes (Rap1p-binding sites). The ability of the synthetic oligonucleotides to function as regulatory sequences was tested using an ENO1-lacZ reporter gene. As observed previously, synthetic oligonucleotides containing both CT- and RPG-boxes conferred strong UAS activity. Likewise, a lone CT-box did not show any UAS activity. By contrast, oligonucleotides containing tandem CT-boxes but no RPG-box conferred strong promoter activity. This UAS activity was not dependent on position or orientation of the oligonucleotides in the 5'' noncoding region. However, it was dependent on both GCR1 and GCR2. These results suggest that the ability of Gcr1p to bind Gcr1p-binding sites in vivo is not absolutely dependent on Rap1p. Eleven independent mutants of GCR1 were isolated that conferred weak UAS activity to a single CT-box. Five mutants had single mutations in Gcr1p''s DNA-binding domain and displayed slightly higher affinity for the CT-box. These results support the hypothesis that Gcr1p and Gcr2p play the central role in glycolytic gene expression and that the function of Rap1p is to facilitate the binding of Gcr1p to its target.  相似文献   

9.
10.
GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'.  相似文献   

11.
12.
In Saccharomyces cerevisiae, the TPI gene product, triosephosphate isomerase, makes up about 2% of the soluble cellular protein. Using in vitro and in vivo footprinting techniques, we have identified four binding sites for three factors in the 5' noncoding region of TPI: a REB1-binding site located at positions -401 to -392, two GCR1-binding sites located at positions -381 to -366 and -341 to -326, and a RAP1-binding site located at positions -358 to -346. We tested the effects of mutations at each of these binding sites on the expression of a TPI::lacZ gene fusion which carried 853 bp of the TPI 5' noncoding region integrated at the URA3 locus. The REB1-binding site is dispensable when material 5' to it is deleted; however, if the sequence 5' to the REB1-binding site is from the TPI locus, expression is reduced fivefold when the site is mutated. Because REB1 blocks nucleosome formation, the most likely function of its binding site in the TPI controlling region is to prevent the formation of nucleosomes over the TPI upstream activation sequence. Mutations in the RAP1-binding site resulted in a 10-fold reduction in expression of the reporter gene. Mutating either GCR1-binding site alone had a modest effect on expression of the fusion. However, mutating both GCR1-binding sites resulted in a 68-fold reduction in the level of expression of the reporter gene. A LexA-GCR1 fusion protein containing the DNA-binding domain of LexA fused to the amino terminus of GCR1 was able to activate expression of a lex operator::GAL1::lacZ reporter gene 116-fold over background levels. From this experiment, we conclude that GCR1 is able to activate gene expression in the absence of REB1 or RAP1 bound at adjacent binding sites. On the basis of these results, we suggest that GCR1 binding is required for activation of TPI and other GCR1-dependent genes and that the primary role of other factors which bind adjacent to GCR1-binding sites is to facilitate of modulate GCR1 binding in vivo.  相似文献   

13.
14.
15.
16.
17.
18.
19.
The Snf1 protein kinase plays a central role in the response to glucose starvation in the yeast Saccharomyces cerevisiae. Previously, we showed that two-hybrid interaction between Snf1 and its activating subunit, Snf4, is inhibited by high levels of glucose. These findings, together with biochemical evidence that Snf1 and Snf4 remain associated in cells grown in glucose, suggested that another protein (or proteins) anchors Snf1 and Snf4 into a complex. Here, we examine the possibility that a family of proteins, comprising Sip1, Sip2, and Gal83, serves this purpose. We first show that the fraction of cellular Snf4 protein that is complexed with Snf1 is reduced in a sip1delta sip2delta gal83delta triple mutant. We then present evidence that Sip1, Sip2, and Gal83 each interact independently with both Snf1 and Snf4 via distinct domains. A conserved internal region binds to the Snf1 regulatory domain, and the conserved C-terminal ASC domain binds to Snf4. Interactions were mapped by using the two-hybrid system and were confirmed by in vitro binding studies. These findings indicate that the Sip1/Sip2/Gal83 family anchors Snf1 and Snf4 into a complex. Finally, the interaction of the yeast Sip2 protein with a plant Snf1 homolog suggests that this function is conserved in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号