首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
S Shin  C Park 《Journal of bacteriology》1995,177(16):4696-4702
During the search for unknown factors involved in motility, we have found that expression of the flagellar master operon flhDC is affected by mutations of the pta and ackA genes, encoding phosphotransacetylase and acetate kinase, respectively (S. Shin, J. Sheen, and C. Park, Korean J. Microbiol. 31:504-511, 1993). Here we describe results showing that this effect is modulated by externally added acetate, except when both pta and ackA are mutated, suggesting the role of acetyl phosphate, an intermediate of acetate metabolism, as a regulatory effector. Furthermore, the following evidence indicates that the phosphorylation of OmpR, a trans factor for osmoregulation, regulates flagellar expression. First, in a strain lacking ompR, the expression of flhDC is no longer responsive to a change in the level of acetyl phosphate. Second, an increase in medium osmolarity does not decrease flhDC expression in an ompR mutant. It is known that such an increase normally enhances OmpR phosphorylation. Third, OmpR protein binds to the DNA fragment containing the flhDC promoter, and its affinity is increased with phosphorylation by acetyl phosphate. DNase I footprinting revealed the regions of the flhDC promoter protected by OmpR in the presence or absence of phosphorylation. Therefore, we propose that the phosphorylated OmpR, generated by either osmolarity change or the internal level of acetyl phosphate, negatively regulates the expression of flagella.  相似文献   

3.
The OmpR protein is a positive regulator involved in osmoregulatory expression of the ompC and ompF genes that specify the major outer membrane proteins OmpC and OmpF, respectively. We purified the OmpR protein not only from wild-type cells but also from two ompR mutants (ompR2 and ompR3) exhibiting quite different phenotypes as to osmoregulation of the ompC and ompF genes. The OmpR2 protein has an amino acid conversion in the C-terminal portion of the OmpR polypeptide, whereas the OmpR3 protein has one in the N-terminal portion. Comparative studies on these purified OmpR proteins were carried out in terms of their interaction with the ompC and ompF promoters. The nucleotide sequences involved in OmpR-binding were determined in individual promoter regions by deoxyribonuclease I footprinting. The OmpR3 protein as well as the wild-type OmpR protein appeared to bind, to similar extents, to both the ompC and ompF promoters. In contrast, the OmpR2 protein bound preferentially to the ompF promoter and failed to protect the ompC promoter against DNAse I digestion. These results support the view that the C-terminal portion of the OmpR protein is responsible for the binding of the OmpR protein to the ompC and ompF promoter DNAs. Based on these results, the structure and function of the OmpR protein are discussed in relation to the mechanism of osmoregulation.  相似文献   

4.
5.
Previously, the transfer of the phosphoryl group between the EnvZ and OmpR proteins, which are involved in activation of the ompF and ompC genes in response to the medium osmolarity, has been demonstrated in vitro. In this study, we characterized mutant EnvZ and OmpR proteins in terms of their in vitro phosphorylation and dephosphorylation. The proteins isolated from the mutants, envZ11 and ompR3, were found to be defective in seemingly the same aspect, i.e. OmpR dephosphorylation. The protein isolated from the ompR77 mutant, which is a suppressor mutant specific for envZ11, was found to be defective in another aspect, i.e. OmpR phosphorylation. These results imply that the phosphotransfer reactions observed in vitro play roles in the mechanism underlying the osmoregulatory expression of the ompF and ompC genes in vivo. We provide evidence that the EnvZ protein is involved not only in OmpR phosphorylation but also in OmpR dephosphorylation.  相似文献   

6.
In bacteria and lower eukaryotes, adaptation to changes in the environment is often mediated by two-component regulatory systems. Such systems provide the basis for chemotaxis, nitrogen and phosphate regulation and adaptation to osmotic stress, for example. In Escherichia coli, the sensor kinase EnvZ detects a change in the osmotic environment and phosphorylates the response regulator OmpR. Phospho-OmpR binds to the regulatory regions of the porin genes ompF and ompC, and alters their expression. Recent evidence suggests that OmpR functions as a global regulator, regulating additional genes besides the porin genes. In this study, we have characterized a previously isolated OmpR2 mutant (V203M) that constitutively activates ompF and fails to express ompC. Because the substitution was located in the C-terminal DNA-binding domain, it had been assumed that the substitution would not affect phosphorylation of the N-terminal domain of OmpR. Our results indicate that this substitution completely eliminates phosphorylation by a small phosphate donor, acetyl phosphate, but not phosphorylation by the kinase EnvZ. The mutant OmpR has altered dephosphorylation kinetics and altered binding affinities to both ompF and ompC sites compared to the wild-type. Thus, a single amino acid substitution in the C-terminal DNA-binding domain has dramatic effects on the N-terminal phosphorylation domain. Most strikingly, we have identified a single base change in the OmpR binding site of ompC that restores high-affinity binding activity by the mutant. We interpret our results in the context of a model for porin gene expression.  相似文献   

7.
Acid is an important environmental condition encountered by Salmonella typhimurium during its pathogenesis. Our studies have shown that the organism can actively adapt to survive potentially lethal acid exposures by way of at least three possibly overlapping systems. The first is a two-stage system induced in response to low pH by logarithmic-phase cells called the log-phase acid tolerance response (ATR). It involves a major molecular realignment of the cell including the induction of over 40 proteins. The present data reveal that two additional systems of acid resistance occur in stationary-phase cells. One is a pH-dependent system distinct from log-phase ATR called stationary-phase ATR. It was shown to provide a higher level of acid resistance than log-phase ATR but involved the synthesis of fewer proteins. Maximum induction of stationary-phase ATR occurred at pH 4.3. A third system of acid resistance is not induced by low pH but appears to be part of a general stress resistance induced by stationary phase. This last system requires the alternative sigma factor, RpoS. Regulation of log-phase ATR and stationary-phase ATR remains RpoS independent. Although the three systems are for the most part distinct from each other, together they afford maximum acid resistance for S. typhimurium.  相似文献   

8.
9.
The OmpR protein is a positive regulator involved in osmoregulatory expression of the ompF and ompC genes, which respectively code for major outer membrane proteins OmpF and OmpC of Escherichia coli. The OmpR protein has been purified to homogeneity from an overproducing strain harboring an ompR gene-carrying plasmid. Throughout the purification the OmpR protein behaved as a single entity. The molecular weight determined on sodium dodecyl sulfate-polyacrylamide gel, the total amino acid composition, and the NH2-terminal amino acid sequence of the purified protein were essentially the same as those deduced from the nucleotide sequence of the ompR gene. Molecular weight determination and cross-linking study on the native protein revealed that the purified protein exists as a monomer. The purified OmpR protein was specifically bound to the promoter regions of the ompC and ompF genes. Experiments with a series of upstream deletions of the ompC and ompF promoters revealed that the region upstream from the -35 region was indispensable for OmpR binding to both the ompC and the ompF promoters. Although it has been proposed that depending on the medium osmolarity the OmpR protein may exist in two alternative structures, which respectively regulate functioning of the ompC and the ompF promoters, the purified OmpR protein appeared to be homogeneous and interacted with both promoters to the same extent.  相似文献   

10.
In Escherichia coli , EnvZ senses changes in the osmotic conditions of the growth environment and controls the phosphorylated state of the regulatory protein, OmpR. OmpR-phosphate regulates the expression of the porin genes, ompF and ompC . To investigate the role of the periplasmic domain of EnvZ in sensing of osmolarity signals, portions of this domain were deleted. Cells containing the EnvZ mutant proteins were able to regulate normally the production of OmpF and OmpC in response to changes in osmolarity. The periplasmic domain of EnvZ was also replaced with the non-homologous periplasmic domain of the histidine kinase PhoR of Bacillus subtilis . Osmoregulation of OmpF and OmpC production in cells containing the PhoR–EnvZ hybrid protein was indistinguishable from that in cells containing wild-type EnvZ. Identical results were obtained with an envZ – pta/ack strain, which could not synthesize acetyl phosphate. Thus, acetyl phosphate was not involved in the regulation of ompF and ompC observed in this study. These results indicate that the periplasmic domain of EnvZ is not essential for sensing of osmolarity signals.  相似文献   

11.
Expression of the ompF and ompC genes, which encode the major outer membrane proteins, OmpF and OmpC, respectively, is affected in a reciprocal manner by the osmolarity of the growth medium. This osmoregulation is mediated by the OmpR protein, a positive regulator of both genes, which is encoded by the ompR gene. Structural and functional properties of this regulatory protein were studied through complementation analysis of the wild-type and five mutant ompR genes that exhibited differences in osmoregulation of the expression of the OmpF and OmpC proteins. Complementation was carried out with combinations of a host strain and a plasmid, each of which carried either the wild-type or a mutant ompR gene. In some combinations, negative complementation was observed. For example, ompR1, a deletion mutation with an OmpF- OmpC- phenotype, was dominant to OmpF+ or OmpC+ phenotypes conferred by other ompR genes. Positive complementation of two mutant ompR genes was also observed in other combinations, when the two mutations were distantly located from each other on the OmpR protein. These results, together with other observations, support the view that the OmpR protein has a two-domain structure, each domain exhibiting a different role in the expression of the OmpF and OmpC proteins, and that this protein takes a multimeric structure as a functional unit.  相似文献   

12.
13.
14.
The expression of the genes ompC and ompF encoding major outer membrane proteins is dependent on the ompR-envZ operon. Here we describe the isolation and characterization of an ompR mutation, a single-base-pair change, that results in an Arg-to-Cys substitution. When present in multiple copies, the mutant allele conferred a dominant OmpC- OmpF+ phenotype. Furthermore, the mutant allele exhibited allele-specific negative complementation with other ompR mutations. This ability, together with its dominant character, suggested that the OmpR protein is capable of multimerization.  相似文献   

15.
16.
Streptococcus mutans normally colonizes dental biofilms and is regularly exposed to continual cycles of acidic pH during ingestion of fermentable dietary carbohydrates. The ability of S. mutans to survive at low pH is an important virulence factor in the pathogenesis of dental caries. Despite a few studies of the acid adaptation mechanism of this organism, little work has focused on the acid tolerance of S. mutans growing in high-cell-density biofilms. It is unknown whether biofilm growth mode or high cell density affects acid adaptation by S. mutans. This study was initiated to examine the acid tolerance response (ATR) of S. mutans biofilm cells and to determine the effect of cell density on the induction of acid adaptation. S. mutans BM71 cells were first grown in broth cultures to examine acid adaptation associated with growth phase, cell density, carbon starvation, and induction by culture filtrates. The cells were also grown in a chemostat-based biofilm fermentor for biofilm formation. Adaptation of biofilm cells to low pH was established in the chemostat by the acid generated from excess glucose metabolism, followed by a pH 3.5 acid shock for 3 h. Both biofilm and planktonic cells were removed to assay percentages of survival. The results showed that S. mutans BM71 exhibited a log-phase ATR induced by low pH and a stationary-phase acid resistance induced by carbon starvation. Cell density was found to modulate acid adaptation in S. mutans log-phase cells, since pre-adapted cells at a higher cell density or from a dense biofilm displayed significantly higher resistance to the killing pH than the cells at a lower cell density. The log-phase ATR could also be induced by a neutralized culture filtrate collected from a low-pH culture, suggesting that the culture filtrate contained an extracellular induction component(s) involved in acid adaptation in S. mutans. Heat or proteinase treatment abolished the induction by the culture filtrate. The results also showed that mutants defective in the comC, -D, or -E genes, which encode a quorum sensing system essential for cell density-dependent induction of genetic competence, had a diminished log-phase ATR. Addition of synthetic competence stimulating peptide (CSP) to the comC mutant restored the ATR. This study demonstrated that cell density and biofilm growth mode modulated acid adaptation in S. mutans, suggesting that optimal development of acid adaptation in this organism involves both low pH induction and cell-cell communication.  相似文献   

17.
18.
19.
The EnvZ protein is a bacterial protein kinase, which specifically phosphorylates the activator protein, OmpR, involved in expression of the ompF and ompC genes in Escherichia coli. The phosphotransfer between the EnvZ and OmpR proteins was postulated to be involved in the signal transduction in response to an environmental osmotic stimulus. In this study, we isolated a novel type of envZ mutant, in which a base substitution resulted in a Tyr-to-Ser conversion at amino acid residue 351 of the EnvZ protein. This single amino acid conversion was found to dramatically affect the functions of the EnvZ protein. The mutant EnvZ protein was defective in its ability not only as to OmpR-phosphorylation but also as to OmpR-dephosphorylation. The envZ mutant, termed envZ30, was isolated as a pseudorevertant, which phenotypically suppresses an ompR3-type mutant exhibiting an OmpF- OmpC-constitutive phenotype. These results will be discussed in relation to the structure and function of the protein kinase, EnvZ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号