首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Salicylate-collapsed membrane potential in pea stem mitochondria   总被引:4,自引:0,他引:4  
Salicylate, acetylsalicylate, benzoate and 3,5-diiodosalicylate were examined for their effects on pea ( Pisum sativum L. cv. Alaska) stem mitochondria and on a tonoplast-enriched fraction. Salicylate collapsed the transmembrane electrochemical potential of mitochondria and the ATP-dependent proton gradient of the tonoplast-enriched vesicle preparation. Benzoate and acetylsalicylate did not show any effect, while 3,5-diiodosalicylate inhibited both basal O2 consumption and ATPase activity of pea mitochondria. Salicylate seems to act as a protonophore. However, its effect is evident only at concentrations higher than those required by classical protonophores and, in addition, can be abolished after removing salicylate from the incubation medium. The activity of salicylate appears linked to the presence of the free phenolic hydroxyl on the benzene ring.  相似文献   

3.
4.
OBJECTIVE: To study the interaction between salicylate and class 1 antiarrhythmic agents. METHODS: The effects of salicylate on class 1 antiarrhythmic agent-induced tonic and phasic block of the Na+ current (INa) of ventricular myocytes and the upstroke velocity of the action potential (Vmax) of papillary muscles were examined by both the patch clamp technique and conventional microelectrode techniques. RESULTS: Salicylate enhanced quinidine-induced tonic and phasic block of INa at a holding potential of -100 mV but not at a holding potential of -140 mV; this enhancement was accompanied by a shift of the hinfinity curve in the presence of quinidine in a further hyperpolarized direction, although salicylate alone did not affect INa. Salicylate enhanced the tonic and phasic block of Vmax induced by quinidine, aprindine and disopyramide but had little effect on that induced by procainamide or mexiletine; the enhancing effects were related to the liposolubility of the drugs. CONCLUSIONS: Salicylate enhanced tonic and phasic block of Na+ channels induced by class 1 highly liposoluble antiarrhythmic agents. Based on the modulated receptor hypothesis, it is probable that this enhancement was mediated by an increase in the affinity of Na+ channel blockers with high lipid solubility to the inactivated state channels.  相似文献   

5.
Salicylate watered onto the soil of tobacco plants in pots reduced the antigen accumulation and local lesion growth of tobacco necrosis virus mechanically inoculated on the leaves. It also retarded the growth of the necrotic centres of lesions and, in parallel, inhibited ethylene production from infected leaves. However, the therapeutic index of salicylate was very small and the chemical had to be applied in advance of, or at the same time as virus inoculation to give good levels of resistance. The number of lesions and their rate of appearance were not affected by salicylate. In addition, it did not induce resistance against multiplication, systemic spread or symptom severity in tobacco plants inoculated with a necrotic strain of potato virus Y. These findings suggest that salicylate is not likely to prove useful as polyvalent chemotherapeutic agent.  相似文献   

6.
The enzymes of naphthalene metabolism are induced in Pseudomonas putida ATCC 17484, PpG7, NCIB 9816, and PG and in Pseudomonas sp. ATCC 17483 during growth on naphthalene or salicylate; 2-aminobenzoate is a gratuitous inducer of these enzymes. The meta-pathway enzymes of catechol metabolism are induced in ATCC 17483 and PPG7 during growth on naphthalene or salicylate or during growth in the presence of 2-aminobenzoate, but in ATCC 17484 and NCIB 9816 the ortho-pathway enzymes of catechol metabolism are induced during growth on naphthalene or salicylate. 2-Aminobenzoate does not induce any enzymes of catechol metabolism in the latter two organisms. In Pseudomonas PG the meta-pathway enzymes are present at high levels under all conditions of growth, but this organism and PpG7 can induce ortho-pathway enzymes during naphthalene or salicylate metabolism. Salicylate appears to be the inducer of the enzymes of naphthalene metabolism in all of the organisms studied and, where they are inducible, of the meta-pathway enzymes, but the properties of Pseudomonas PG suggest that separate, regulatory systems may exist.  相似文献   

7.
Salicylate is a small amphiphilic molecule which has diverse effects on membranes and membrane-mediated processes. We have utilized micropipette aspiration of giant unilamellar vesicles to determine salicylate's effects on lecithin membrane elasticity, bending rigidity, and strength. Salicylate effectively reduces the apparent area compressibility modulus and bending modulus of membranes in a dose-dependent manner at concentrations above 1 mM, but does not greatly alter the actual elastic compressibility modulus at the maximal tested concentration of 10 mM. The effect of salicylate on membrane strength was investigated using dynamic tension spectroscopy, which revealed that salicylate increases the frequency of spontaneous defect formation and lowers the energy barrier for unstable hole formation. The mechanical and dynamic tension experiments are consistent and support a picture in which salicylate disrupts membrane stability by decreasing membrane stiffness and membrane thickness. The tension-dependent partitioning of salicylate was utilized to calculate the molecular volume of salicylate in the membrane. The free energy of transfer for salicylate insertion into the membrane and the corresponding partition coefficient were also estimated, and indicated favorable salicylate-membrane interactions. The mechanical changes induced by salicylate may affect several biological processes, especially those associated with membrane curvature and permeability.  相似文献   

8.
Salicylate administered to detached tobacco (Nicotiana tabacum L.) leaves kept in the light rapidly induced an increase in stomatal resistance. This effect was not the result of water stress. Both the concentration of salicylate and the duration of the application to leaves affected the extent of the stomatal response. Application of salicylate for short periods showed that, once the stomatal response started, it was maintained for long period of time in the absence of further supply. K+ or Ca2+ were able to lower the stomatal resistance induced by salicylate, but only when both the ions were administered together with salicylate the stomatal closure was prevented. The results suggest that salicylate elicits some alterations interfering with the control of, stomatal movements, possibly affecting the integrity of cell membranes.  相似文献   

9.
目的:水杨酸是阿司匹林的活性成分,是导致耳鸣的主要原因。而本实验主要探讨水杨酸钠对耳蜗螺旋神经节(SGN)调亡相关基因Caspase 3的mRNA及蛋白表达水平的影响,并初步探讨水杨酸钠对耳蜗毒性的机制。方法:分离取出大鼠蜗轴螺旋管,用酶消化后原代培养SGN,采用荧光定量PCR法检测5 mM水杨酸钠处理前后(1 h,3 h,6 h)Caspase 3 mRNA的变化,WesternBlot检测其蛋白的变化情况。结果:5 mM水杨酸钠处理细胞后1 h,Caspase 3 mRNA表达水平没有明显改变(P〉0.05),但是当水杨酸钠处理3 h后,其表达水平明显上调(P〈0.05),并呈时间依赖关系。而其蛋白表达水平也同样明显升高(P〈0.05)。结论:本实验取蜗轴螺旋管进行原代培养,获得较多的SGN,而水杨酸钠能上调这些原代培养SGN的Caspase 3 mRNA及蛋白的表达,导致SGN调亡,这对水杨酸钠耳蜗毒性的研究有一定应用价值。  相似文献   

10.
细菌的光响应及其机制研究进展   总被引:2,自引:0,他引:2  
光作为一种环境信号,对细菌的生长和代谢有广泛的调节作用。对于光合细菌来讲,一方面,感光蛋白可以协助光合细菌游向最适的光环境,以利于其细胞内的光系统进行光合作用;另一方面,一些光合细菌可以感受并捕获光能为代谢提供能量。目前发现有些非光合细菌也有光响应,感光蛋白在细菌基因组内是普遍存在的,而且与细菌的一些生理功能有关。本文以非光合细菌为主介绍了目前在细菌中发现的趋光现象及其响应机制。  相似文献   

11.
The effect of salicylate, a marRAB inducer, on the resistance to beta-lactams was characterized in an AmpC beta-lactamase hyperproducer Morganella morganii clinical isolate (the M1 strain). Results were compared with those of the effect of salicylate in a wild-type M. morganii strain. Salicylate induced a decreased susceptibility to nalidixic acid, norfloxacin and tetracycline and simultaneously increased the susceptibility to beta-lactams apparently due to the repression of AmpC beta-lactamase synthesis in the M1 strain. Likewise, salicylate only repressed 46 kDa outer membrane protein expression in the wild-type strain, since the clinical isolate M1 did not express it.  相似文献   

12.
How does taking the full course of antibiotics prevent antibiotic resistant bacteria establishing in patients? We address this question by testing the possibility that horizontal/lateral gene transfer (HGT) is critical for the accumulation of the antibiotic-resistance phenotype while bacteria are under antibiotic stress. Most antibiotics prevent bacterial reproduction, some by preventing de novo gene expression. Nevertheless, in some cases and at some concentrations, the effects of most antibiotics on gene expression may not be irreversible. If the stress is removed before the bacteria are cleared from the patients by normal turnover, gene expression restarts, converting the residual population to phenotypic resistance. Using mathematical models we investigate how static recipients of resistance genes carried by plasmids accumulate resistance genes, and how specifically an environment cycling between presence and absence of the antibiotic uniquely favors the evolution of horizontally mobile resistance genes. We found that the presence of static recipients can substantially increase the persistence of the plasmid and that this effect is most pronounced when the cost of carriage of the plasmid decreases the cell's growth rate by as much as a half or more. In addition, plasmid persistence can be enhanced even when conjugation rates are as low as half the rate required for the plasmid to persist as a parasite on its own.  相似文献   

13.
Growth of 6 bacterial strains representing dominant members of the human colonic microflora was measured in the presence of 0.025, 0.05 and 0.5 % chitosan (from shrimp shells, with a 97 % final degree of deacetylation). The effect of chitosan was variable and dependent on bacterial species. The most susceptible to chitosan were bacteria belonging to genera Bacteroides and Clostridium (91-97% growth inhibition). On the other hand, Roseburia sp., Eubacterium sp. and Faecalibacterium sp. were more resistant (63-83 % inhibition of growth). Chitosan can thus be considered as one of the means for influencing the bacterial population in the human colon.  相似文献   

14.
In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive Salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfectants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of mar in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated. Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner.  相似文献   

15.
The effects of salicylate on stomatal resistance (a measure of stomatal opening) were compared with those produced by 2,4-dinitrophenol and abscisic acid. Salicylate and dinitrophenol had the same minimum effective concentration and comparable kinetics, and induced stomatal closure persisting for a long time in the absence of further supply. However, a K and Ca solution prevented the salicylate-induced, but not dinitrophenol-induced, stomatal closure. The effects of salicylate and abscisic acid had very different characteristics. Cytokinins had no relevant effects on the stomatal closure induced by the three compounds. A close correlation was found between stomatal closure and K+ leakage from the treated leaves, suggesting that damage to the cell membrane may be involved. Research work supported by CNR, Italy. Special grant I.P.R.A.-Subproject 1. Paper N. 666.  相似文献   

16.
Stimulative and inhibitory effects of bacteria on the growth of microalgae   总被引:16,自引:1,他引:15  
Several examples of stimulative and inhibitoryeffects of bacteria on microalgal growth areintroduced, and the importance of bacteria in algalmass culture is investigated. Diatoms are often usedas live food for planktonic larvae of sea urchin andbivalves. Monodispersed Chaetoceros ceratosporum hasbeen cultivated by using clean, high nutrient content,deep seawater (DSW). However, the growth rate and cellyield of diatoms fluctuated, to relatively largeextent, with the season that DSW was collected. Whensome bacterial strains isolated from DSW were added tothe culture, diatom growth was often stimulated and arelatively constant cell yield was obtained. Anotherdiatom species, C. gracilis, was also stimulated byadding some bacterial strains to cultures. Thepositive effect of bacteria on diatoms was observednot only for planktonic species, but also on attachedspecies. A benthic diatom, Nitzschia sp., wasstimulated by a bacterial film of Alcaligenes on thesurface of the substratum. On the other hand, a strainof Flavobacterium sp. isolated from natural seawaterduring the decline period of an algal bloom had a strongalgicidal effect on the red tide plankton,Gymnodinium mikimotoi. Recent reports demonstratethat many bacterial strains have significantalgicidal effects on many species of red tideplankton. These results indicate that bacterialeffects should be taken into account to obtain stablemass culture of food microalgae.  相似文献   

17.
Understanding adaptation to complex environments requires information about how exposure to one selection pressure affects adaptation to others. For bacteria, antibiotics and viral parasites (phages) are two of the most common selection pressures and are both relevant for treatment of bacterial infections: increasing antibiotic resistance is generating significant interest in using phages in addition or as an alternative to antibiotics. However, we lack knowledge of how exposure to antibiotics affects bacterial responses to phages. Specifically, it is unclear how the negative effects of antibiotics on bacterial population growth combine with any possible mutagenic effects or physiological responses to influence adaptation to other stressors such as phages, and how this net effect varies with antibiotic concentration. Here, we experimentally addressed the effect of pre‐exposure to a wide range of antibiotic concentrations on bacterial responses to phages. Across 10 antibiotics, we found a strong association between their effects on bacterial population size and subsequent population growth in the presence of phages (which in these conditions indicates phage‐resistance evolution). We detected some evidence of mutagenesis among populations treated with fluoroquinolones and β‐lactams at sublethal doses, but these effects were small and not consistent across phage treatments. These results show that, although stressors such as antibiotics can boost adaptation to other stressors at low concentrations, these effects are weak compared to the effect of reduced population growth at inhibitory concentrations, which in our experiments strongly reduced the likelihood of subsequent phage‐resistance evolution.  相似文献   

18.
Salicylate and its pro-drug form aspirin are widely used medicinally for their analgesic and anti-inflammatory properties, and more recently for their ability to protect against colon cancer and cardiovascular disease. Despite the wide use of salicylate, the mechanisms underlying its biological activities are largely unknown. Recent reports suggest that salicylate may produce some of its effects by modulating the activities of protein kinases. Since we have previously shown that the farnesyltransferase inhibitor l-744, 832 inhibits cell proliferation and p70(s6k) activity, and salicylate inhibits cell proliferation, we examined whether salicylate affects p70(s6k) activity. We find that salicylate potently inhibits p70(s6k) activation and phosphorylation in a p38 MAPK-independent manner. Interestingly, low salicylate concentrations (/=5 mm) are required to block p70(s6k) activation by epidermal growth factor + insulin-like growth factor-1. These data suggest that salicylate may selectively inhibit p70(s6k) activation in response to specific stimuli. Inhibition of p70(s6k) by salicylate occurs within 5 min, is independent of the phosphatidylinositol 3-kinase pathway, and is associated with dephosphorylation of p70(s6k) on its major rapamycin-sensitive site, Thr(389). A rapamycin-resistant mutant of p70(s6k) is resistant to salicylate-induced Thr(389) dephosphorylation.  相似文献   

19.
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. P(Rv0560c) activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of P(Rv0560c) were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The -10 and -35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the -35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter.  相似文献   

20.
Selection of bacterial wilt-resistant tomato through tissue culture   总被引:6,自引:0,他引:6  
Bacterial wilt-resistant plants were obtained using a tomato tissue culture system. A virulent strain ofPseudomonas solanacearum secreted some toxic substances into the culture medium. Leaf explant-derived callus tissues which were resistant to these toxic substances in the culture filtrate were selectedin vitro and regenerated into plants. These plants expressed bacterial wilt resistance at the early infection stage to suppress or delay the growth of the inoculated bacteria. On the other hand, complete resistance was obtained in self-pollinated progeny of regenerants derived from non-selected callus tissues. These plants showed a high resistance when inoculated with this strain, and were also resistant when planted in a field infested with a different strain of the pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号