首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We report cloning and sequencing of gene ps1 encoding a versatile peroxidase combining catalytic properties of lignin peroxidase (LiP) and manganese peroxidase (MnP) isolated from lignocellulose cultures of the white-rot fungus Pleurotus eryngii. The gene contains 15 putative introns, and the deduced amino acid sequence consists of a 339-residue mature protein with a 31-residue signal peptide. Several putative response elements were identified in the promoter region. Amino acid residues involved in oxidation of Mn(2+) and aromatic substrates by direct electron transfer to heme and long-range electron transfer from superficial residues as predicted by analogy with Phanerochaete chrysosporium MnP and LiP, respectively. A dendrogram is presented illustrating sequence relationships between 29 fungal peroxidases.  相似文献   

3.
4.
5.
6.
A haem peroxidase different from other microbial, plant and animal peroxidases is described. The enzyme is secreted as two isoforms by dikaryotic Pleurotus eryngii in peptone-containing liquid medium. The corresponding gene, which presents 15 introns and encodes a 361-amino-acid protein with a 30-amino-acid signal peptide, was isolated as two alleles corresponding to the two isoforms. The alleles differ in three amino acid residues and in a seven nucleotide deletion affecting a single metal response element in the promoter. When compared with Phanerochaete chrysosporium peroxidases, the new enzyme appears closer to lignin peroxidase (LiP) than to Mn-dependent peroxidase (MnP) isoenzymes (58–60% and 55% identity respectively). The molecular model built using crystal structures of three fungal peroxidases as templates, also showed high structural affinity with LiP (Cα-distance 1.2 Å). However, this peroxidase includes a Mn2+ binding site formed by three acidic residues (E36, E40 and D175) near the haem internal propionate, which accounts for the ability to oxidize Mn2+. Its capability to oxidize aromatic substrates could involve interactions with aromatic residues at the edge of the haem channel. Another possibility is long-range electron transfer, e.g. from W164, which occupies the same position of LiP W171 recently reported as involved in the catalytic cycle of LiP.  相似文献   

7.
Dichomitus squalens belongs to a group of white-rot fungi which express manganese peroxidase (MnP) and laccase but do not express lignin peroxidase (LiP). To facilitate structure/function studies of MnP from D. squalens, we heterologously expressed the enzyme in the well-studied basidiomycete, Phanerochaete chrysosporium. The glyceraldehyde-3-phosphate-dehydrogenase (gpd) promoter of P. chrysosporium was fused to the coding region of the mnp2 gene of D. squalens, 5 bp upstream of the translation start site, and placed in a vector containing the ural gene as a selectable marker. Purified recombinant protein (rDsMnP) was similar in kinetic and spectral characteristics to both the wild-type MnPs from D. squalens and P. chrysosporium (PcMnP). The N-terminal amino acid sequence of the rDsMnP was determined and was identical to the predicted sequence. Cleavage of the propeptide followed a conserved amino acid motif (A-A-P-S/T) in both rDsMnP and PcMnP. However, the protein from D. squalens was considerably more thermostable than its P. chrysosporium homolog with half-lives 15- to 40-fold longer at 55 degrees C. As previously demonstrated for PcMnP, addition of exogenous MnII and CdII conferred additional thermal stability to rDsMnP. However, unlike PcMnP, ZnII also confers some additional thermal stability to rDsMnP at 55 degrees C. Some differences in the metal-specific effects on thermal stability of rDsMnP at 65 degrees C were noted.  相似文献   

8.
4-Chlorophenol (4-CP) degradation was investigated by suspended and immobilized Phanerochaete chrysosporium conducted in static and agitated cultures. The best results were achieved when experiment was carried out in a rotating biological contactor instead of an Erlenmeyer flask, for both batch degradation and repeated batch degradation. The relative contribution of lignin peroxidase (LiP) versus manganese peroxidase (MnP) to the 4-CP degradation by P. chrysosporium was investigated. 4-CP degradation slightly increased and a high level of MnP (38 nKat ml(-1)) was produced when P. chrysosporium was grown at high Mnll concentration. High LiP production in the medium had no significant effect on 4-CP degradation. 4-CP degradation occurred when P. chrysosporium was grown in a medium that repressed LiP and MnP production. This result indicates that LiP and MnP are not directly involved in 4-CP degradation by P. chrysosporium.  相似文献   

9.
通过诱变得到十一株木素过氧化物酶酶活降低的黄孢原毛平革菌(Phanerochaetechrysosporium)突变株,用灰色理论分析了其木素过氧化物酶类的产生与木素降解能力间的相关性,并从中筛选到一株木素过氧化物酶缺陷、锰过氧化物酶酶活明显降低的突变株,其木素降解能力为原始菌株的80%左右。该菌粗酶液作用于纤维素酶酶解杉木木素和天然褐腐木素,可产生小分子的木素降解产物,此反应不需H2O2参与。红外光谱分析表明粗酶液对木素的作用主要为氧化作用,因此推测此突变株粗酶液中含有不同于木素过氧化物酶和锰过氧化物酶的与木素氧化降解有关的酶类  相似文献   

10.
Two new, at primary sequence and protein structure levels different, manganese peroxidase encoding genes from the white rot basidiomycete Phlebia radiata are described. Both genes are expressed in liquid cultures of P. radiata containing milled alder wood or glucose as carbon source, and high Mn(2+) concentration. The gene Pr-mnp2 contains 7 introns and codes for a 390 amino-acid polypeptide, whereas Pr-mnp3 presents 11 introns and codes for a 362 amino-acid protein. The 3-D molecular models confirm this diversity; the predicted Pr-MnP2 with a long C-terminal extension has the highest structural similarity with the crystal structure of Phanerochaete chrysosporium MnP1, whereas the shorter Pr-MnP3 protein is structurally more related to lignin peroxidases (P. chrysosporium LiPH8/H2). In Pr-MnP3, however, an alanine replaces the exposed tryptophan present in LiP and versatile peroxidases, and both Pr-MnPs include the conserved Mn(2+)-binding amino-acid ligands. This is the first occasion when two enzymes of similar function and origin fall into phylogenetically distinct subfamilies within the expanding dendrogram of the class II fungal secretory heme peroxidases.  相似文献   

11.
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.  相似文献   

12.
Studies on the production of fungal peroxidases in Aspergillus niger   总被引:3,自引:0,他引:3  
To get insight into the limiting factors existing for the efficient production of fungal peroxidase in filamentous fungi, the expression of the Phanerochaete chrysosporium lignin peroxidase H8 (lipA) and manganese peroxidase (MnP) H4 (mnp1) genes in Aspergillus niger has been studied. For this purpose, a protease-deficient A. niger strain and different expression cassettes have been used. Northern blotting experiments indicated high steady-state mRNA levels for the recombinant genes. Manganese peroxidase was secreted into the culture medium as an active protein. The recombinant protein showed specific activity and a spectrum profile similar to those of the native enzyme, was correctly processed at its N terminus, and had a slightly lower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Recombinant MnP production could be increased up to 100 mg/liter upon hemoglobin supplementation of the culture medium. Lignin peroxidase was also secreted into the extracellular medium, although the protein was not active, presumably due to incorrect processing of the secreted enzyme. Expression of the lipA and mnp1 genes fused to the A. niger glucoamylase gene did not result in improved production yields.  相似文献   

13.
14.
Chen M  Zeng G  Tan Z  Jiang M  Li H  Liu L  Zhu Y  Yu Z  Wei Z  Liu Y  Xie G 《PloS one》2011,6(9):e25647
Previous works have demonstrated that ligninolytic enzymes mediated effective degradation of lignin wastes. The degrading ability greatly relied on the interactions of ligninolytic enzymes with lignin. Ligninolytic enzymes mainly contain laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP). In the present study, the binding modes of lignin to Lac, LiP and MnP were systematically determined, respectively. Robustness of these modes was further verified by molecular dynamics (MD) simulations. Residues GLU460, PRO346 and SER113 in Lac, residues ARG43, ALA180 and ASP183 in LiP and residues ARG42, HIS173 and ARG177 in MnP were most crucial in binding of lignin, respectively. Interactional analyses showed hydrophobic contacts were most abundant, playing an important role in the determination of substrate specificity. This information is an important contribution to the details of enzyme-catalyzed reactions in the process of lignin biodegradation, which can be used as references for designing enzyme mutants with a better lignin-degrading activity.  相似文献   

15.
The enhanced green fluorescent protein (GFP) gene (egfp) was used as a reporter of gene expression driven by the glyceraldehyde-p-dehydrogenase (gpd) gene promoter and the manganese peroxidase isozyme 1 (mnp1) gene promoter in Phanerochaete chrysosporium. Four different constructs were prepared. pUGGM3' and pUGiGM3' contain the P. chrysosporium gpd promoter fused upstream of the egfp coding region, and pUMGM3' and pUMiGM3' contain the P. chrysosporium mnp1 promoter fused upstream of the egfp gene. In all constructs, the egfp gene was followed by the mnp1 gene 3' untranslated region. In pUGGM3' and pUMGM3', the promoters were fused directly with egfp, whereas in pUGiGM3' and pUMiGM3', following the promoters, the first exon (6 bp), the first intron (55 bp), and part of the second exon (9 bp) of the gpd gene were inserted at the 5' end of the egfp gene. All constructs were ligated into a plasmid containing the ura1 gene of Schizophyllum commune as a selectable marker and were used to transform a Ural1 auxotrophic strain of P. chrysosporium to prototrophy. Crude cell extracts were examined for GFP fluorescence, and where appropriate, the extracellular fluid was examined for MnP activity. The transformants containing a construct with an intron 5' of the egfp gene (pUGiGM3' and pUMiGM3') exhibited maximal fluorescence under the appropriate conditions. The transformants containing constructs with no introns exhibited minimal or no fluorescence. Northern (RNA) blots indicated that the insertion of a 5' intron resulted in more egfp RNA than was found in transformants carrying an intronless egfp. These results suggest that the presence of a 5' intron affects the expression of the egfp gene in P. chrysosporium. The expression of GFP in the transformants carrying pUMiGM3' paralled the expression of endogenous mnp with respect to nitrogen and Mn levels, suggesting that this construct will be useful in studying cis-acting elements in the mnp1 gene promoter.  相似文献   

16.
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.  相似文献   

17.
18.
The glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter was used to drive expression of lip2, the gene encoding lignin peroxidase (LiP) isozyme H8, in primary metabolic cultures of Phanerochaete chrysosporium. The expression vector, pUGL, also contained the Schizophyllum commune ura1 gene as a selectable marker. pUGL was used to transform a P. chrysosporium Ura11 auxotroph to prototrophy. Ura+ transformants were screened for peroxidase activity in liquid cultures containing high-carbon and high-nitrogen medium. Recombinant LiP (rLiP) was secreted in active form by the transformants after 4 days of growth, whereas endogenous lip genes were not expressed under these conditions. Approximately 2 mg of homogeneous rLiP/liter was obtained after purification. The molecular mass, pI, and optical absorption spectrum of rLiPH8 were essentially identical to those of the wild-type LiPh8 (wt LiPH8), indicating that heme insertion, folding, and secretion functioned normally in the transformant. Steady-state and transient-state kinetic properties for the oxidation of veratryl alcohol between wtLiPH8 and rLiPH8 were also identical.  相似文献   

19.
The biological transformation of lignocellulose of Achras zapota by white rot fungi, Phanerochaete chrysosporium, in solid state fermentation (SSF) was studied for 28 days. The kinetic transformation of lignocellulose was monitored through the determination of acid soluble and acid insoluble lignin content, total organic carbon (TOC) and chemical oxygen demand (COD). The lignolytic enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP) were quantified on weekly intervals. The degradation of lignin and other structural moieties of A. zapota lignocellulose were confirmed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The degradation of lignin was increased after 7 days of fermentation with the release of water soluble and fermentable products. The LiP and MnP activities were increased in the first week of SSF and lignin degradation was also set to increase. This was accompanied with increase in COD by 94.6% and TOC by 80% and lignin content was decreased by 76%. The maximum activities of the enzymes LiP and MnP in extracellular fluid of SSF under nitrogen limitation, at pH 5.0, at temperature 37 degrees C and at 60% humidity were 2100 U/L and 1200 U/L.  相似文献   

20.
张芳芳  张桐  戴丹  张振豪  张波  李玉 《菌物学报》2021,40(7):1869-1880
本研究利用愈创木酚和苯胺蓝固体培养基对菌株进行初筛,利用形态学和分子生物学对筛选出的菌株进行鉴定,以黄孢原毛平革菌Phanerochaete chrysosporium CGMCC 5.0776为对照,利用其对玉米秸秆进行预处理并测定木质素和纤维素的降解率,测定筛选菌株在预处理玉米秸秆过程中漆酶、锰过氧化物酶(mang...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号