首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing demands being placed on natural grasslands in the era following the appearance of Bovine Spongiform Encephalitis require that forage crops provide a reliable extended season of growth, combined with good winter survival to ensure sward longevity. The ability to tolerate sub-zero temperatures is integral to the survival of perennial forages. Since the development of freezing tolerance is crucial to the survival and productivity of over-wintering crops, forage breeding programmes require an improved understanding of the individual characteristics that contribute to tolerance to sub-zero temperatures. Photosynthesis, carbohydrate content and changes in protein composition were investigated in two varieties of Lolium perenne which differ in their response to growth at low temperature.  相似文献   

2.
The stability during storage of phosphogluco-isomerase (D-glucose-6-phosphate ketol isomerase EC 5.3.1.9) isoenzymes coded for at the PGI/2 locus has been examined. Extracts were prepared from leaves of several diploid and tetraploid Italian ( Lolium multiflorum Lam.) and perennial ( Lolium perenne . L.) ryegrass cultivars, as well as from interspecific hybrids. It was clearly demonstrated that extracts from plants homozygous for a specific PGI/2 allele could quickly generate new band forms upon storage. The novel forms were not due to aggregation or disintegration of the original enzyme molecule, and some of the generated bands electrophoresed to gel positions characteristic of other alleles of the same locus. An assessment was also made of the effects of a range of compounds added to the storage buffer. The most likely explanation was that the observed changes were due to the action of proteases, and the implications, especially for those using isoenzymes as genetic markers, are discussed.  相似文献   

3.
In this study, we investigated the physicochemical properties of the cellulosic preparations obtained from both untreated perennial ryegrass leaves and de-juiced leaves. It was found that treatment at 22 degrees C with 18% NaOH and 18% KOH for 2h, and 10% NaOH and 10% KOH for 16 h yielded 28.2%, 28.8%, 22.7%, 23.4%, respectively, of 'cellulose' residue from untreated ryegrass leaves and 35.7%, 36.8%, 32.8% and 34.6%, respectively, from the de-juiced leaves. For each cellulosic fraction, the glucose content was 71.6%, 69.6%, 67.8%, 66.7%, 69.7%, 68.6%, 63.9% and 61.7%, respectively. The structure of the cellulose samples was examined using FTIR and CP/MAS (13)C NMR spectroscopy and X-ray diffraction. The cellulosic preparations were free of bound lignin except for noticeable amounts of residual hemicelluloses (28.4-38.3%), and had intrinsic viscosities between 275.1 and 361.0 mL/g, along with molecular weights from 144,130 to 194,930 g/mol. This study found that the cellulose samples isolated from both de-juiced ryegrass leaves and the untreated leaves had a much lower percent crystallinity (33.0-38.6%) than that from wood-based fibres (60-70%) and had much shorter fibres (0.35-0.49 mm) than those of either cereal straws, bagasse or wood. In addition, a partial disruption of the hydrogen bonds and microfibrils may occur during the de-juicing process by mechanical activity, which results in a decreased cellulose crystallinity and fibre length. These findings are significant in relation to hydrolysing ryegrass cellulose for bio-ethanol production.  相似文献   

4.
Position in and contribution of leaf laminae to the canopy of forage grasses are important both in determining herbage growth rates and intake rate by grazing animals. These canopy characteristics are controlled by the way dry matter is apportioned between sheath and lamina in growing leaves. The objective of this work was to determine how the development of individual leaves is affected by altering the effective length of the psuedostem tube, on the assumption that the light environment within the tube varied. The development of a leaf from initiation at the apex to maturity was followed by successive destructive dissections of tillers. Vertical incisions were made in the pseudostem of each tiller to three different depths. The three treatments imposed were — no incision (control), moderate and severe incision of the sheath length. Destructive harvests of tillers followed 3, 6, 12 and 24 days after imposition of treatments. Incision resulted in the length of the monitored leaf being reduced significantly at all harvests, and differentiation of the sheath beginning earlier. The length reduction reflected a reduction in both cell size and cell number and the effects were evident at the earliest harvest. The data support the theory that leaf size and timing of onset of sheath development are influenced by the environment of the developing leaf. The present results indicate that sheath tube length affects leaf development and suggests that the effects are substantially explained by a direct light effect on the location and depth of the elongation zone.  相似文献   

5.
Twelve wild, endophyte-infected populations of perennial ryegrass were tested for resistance against artificial infection of Drechslera siccans and Fusarium spp. Plants with identified endophyte presence (E+), together with plants free from endophytes (E−), were inoculated with serious turf grass pathogens: D. siccans (cause of brown blight) and a mixture of Fusarium species (cause of Fusarium blight). For both diseases, the positive effect of endophyte presence on plant resistance was observed. In the case of a few ecotypes, endophyte infection increased resistance against both diseases, which is of practical importance for disease control.  相似文献   

6.
BackgroundSelf-incompatibility (SI) is a physiological mechanism that many flowering plants employ to prevent self-fertilization and maintain heterozygosity. In the grass family this is known to be controlled by a two locus (S-Z) system; however, the SI system is intrinsically leaky. Modifier genes of both the S and Z loci and a further locus, T, are known to override SI leading to self-fertilization and self-seed production. This has implications for the ecological and evolutionary success as well as the commercial breeding of grasses. Here we report a study where the genetic control of self-compatibility (SC) was determined from the results of self-pollinating an F2 population of perennial ryegrass from two independently derived inbred lines produced by single-seed descent.Methods In vitro self-pollinations of 73 fertile plants were analysed. A genetic association analysis was made with a panel of 1863 single-nucleotide polymorphism (SNP) markers, generated through genotype-by-sequencing methodology. Markers were placed on a recombination map of seven linkage groups (LGs) created using Joinmap v.5. The seed set on self- and open-pollinated inflorescences was determined on 143 plants, including the 73 plants analysed for self-pollination response.Key ResultsSelf-pollinations revealed a bimodal distribution of percentage SC with peaks at 50 and 100 %. A single quantitative trait locus (QTL) was identified with peak association for marker 6S14665z17875_11873 that mapped to LG 6. Peak position was associated with maximum marker segregation distortion. The self-compatible plants were equally fecund after self- and open pollination.ConclusionsThis is the first report in the Poaceae family of an SC locus located on LG 6. This new SC QTL discovery, as well as indicating the complex nature of the pollen–stigma recognition process and its evolutionary significance, provides an additional source of SC for breeding perennial ryegrass.  相似文献   

7.
8.
9.
A total of 37 plants (30 Lolium multiflorum Lam., 6 L. perenne L., 1 L. temulentum L.) were regenerated from cell suspension colonies bombarded with plasmid DNAs encoding a hygromycin resistance gene (HYG) expressed under a CaMV35S promoter and a β-glucuronidase (GUS) gene expressed under a truncated rice actin1 promoter and first intron, or a maize ubiquitin promoter and first intron. Resistant plants were regenerated under hygromycin selection and transferred to soil. PCR analysis showed that the co-transformation frequency of the GUS gene varied from 33% to 78% of transformants, while histochemical staining of leaf tissue from soil-grown plants showed that the co-expression frequency varied from 37% to 50%. The transgenic nature of the plants was demonstrated by Southern hybridisation analysis, which also showed that the non-selected (GUS) gene was generally present at a higher copy number than the selected (HYG) gene. Received: 10 October 1997 / Revision received: 18 March 1998 / Accepted: 29 November 1998  相似文献   

10.
Simulated swards of perennial ryegrass ( Lolium perenne ) growing in 1-m3 soil blocks in the glasshouse were either well watered or deprived of water for 57 d and then rewatered. The first aim was to measure effects of drought on sugar (water-soluble carbohydrate) composition of laminae and sheaths of mature laminae, and bases and laminae of young (growing) leaves. The second aim was to use pulse labelling with 14CO2 to follow the partitioning of recently-fixed assimilates, and the assembly and consumption of reserve sugars (fructans). Over the last 7 d of drought growth almost stopped, old leaves died faster than they were replaced, and total sugar (which had doubled in concentration during drought) was rapidly consumed. Leaf laminae had lower content of total sugars and of large fructan (DP>5) than did growing bases and sheaths. Drought greatly reduced the rate at which sugar was exported from the laminae to the sheaths and growing leaf bases, and the rate at which it was converted to fructan. Nevertheless, fructan accumulated over the first 50 d of drought. Rewatering did not result in depolymerization and remobilization of sugars that had been formed during the last 7 d of drought, but stimulated their further assembly into high-DP fructans. Our hypothesis, that accumulation of neo-kestose (a DP-3 fructan) in droughted laminae was a symptom of sugar remobilization just before death, was disproved. It is concluded that sugar reserves contribute to drought resistance only under extreme conditions. The specific role of fructan in dry environments might be to improve regrowth when drought is relieved, rather than to enhance growth during drought.  相似文献   

11.
Background and Aims: Perennial ryegrass (Lolium perenne) is one of the key forageand amenity grasses throughout the world. In the UK it accountsfor 70 % of all agricultural land use with an estimated farmgate value of £6 billion per annum. However, in termsof the genetic resources available, L. perenne has lagged behindother major crops in Poaceae. The aim of this project was thereforethe construction of a microsatellite-enriched genomic libraryfor L. perenne to increase the number of genetic markers availablefor both marker-assisted selection in breeding programmes andgene isolation. Methods: Primers for 229 non-redundant microsatellite markers were designedand used to screen two L. perenne genotypes, one amenity andone forage. Of the 229 microsatellites, 95 were found to showpolymorphism between amenity and forage genotypes. A selectionof microsatellite primers was selected from these 95 and usedto screen two mapping populations derived from intercrossingand backcrossing the two forage and amenity grass genotypes. Key Results and Conclusions: The utility of the resulting genetic maps for analysis of thegenetic control of target traits was demonstrated by the mappingof genes associated with heading date to linkage groups 4 and7.  相似文献   

12.
Molecular genetic marker development in perennial ryegrass has largely been dependent on anonymous sequence variation. The availability of a large-scale EST resource permits the development of functionally-associated genetic markers based on SNP variation in candidate genes. Genic SNP loci and associated haplotypes are suitable for implementation in molecular breeding of outbreeding forage species. Strategies for in vitro SNP discovery through amplicon cloning and sequencing have been designed and implemented. Putative SNPs were identified within and between the parents of the F1(NA6 × AU6) genetic mapping family and were validated among progeny individuals. Proof-of-concept for the process was obtained using the drought tolerance-associated LpASRa2 gene. SNP haplotype structures were determined and correlated with predicted amino acid changes. Gene-length LD was evaluated across diverse germplasm collections. A survey of SNP variation across 100 candidate genes revealed a high frequency of SNP incidence (c. 1 per 54 bp), with similar proportions in exons and introns. A proportion (c. 50%) of the validated genic SNPs were assigned to the F1(NA6 × AU6) genetic map, showing high levels of coincidence with previously mapped RFLP loci. The perennial ryegrass SNP resource will enable genetic map integration, detailed LD studies and selection of superior allele content during varietal development.  相似文献   

13.
14.
Enrichment methods were optimised in order to isolate large numbers of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.), with the aim of developing a comprehensive set of loci for trait mapping and cultivar identification. Two libraries were constructed showing greater than 50% enrichment for a variety of SSR-motif types. Sequence characterisation of 1853 clones identified 859 SSR-containing clones, of which 718 were unique. Truncation of flanking sequences limited potential primer design to 366 clones. One-hundred selected SSR primer pairs were evaluated for amplification and genetic polymorphism across a panel of diverse genotypes. The efficiency of amplification was 81%. A relatively high level of SSR polymorphism was detected (67%), with a range of 2–7 alleles per locus. Mendelian segregation of alleles detected by selected SSR-locus primer pairs was demonstrated in the F1 progeny of a pair cross. Cross-species amplification was detected in a number of related pasture and turfgrass species, with high levels of transfer to other Lolium species and members of the related genus Festuca. The identity of putative SSR ortholoci in these related species was confirmed by DNA sequence analysis. These loci constitute a valuable resource of ideal markers for the molecular breeding of ryegrasses and fescues. Received: 8 May 2000 / Accepted: 13 June 2000  相似文献   

15.
Summary Isolation of viable egg cells of perennial ryegrass (Lolium perenne L.) has been accomplished. After an enzyme incubation, ovules disintegrated into loose cells upon mechanical manipulation. The egg cells could be identified between the bulk of sporophytic cells derived from the macerated ovules. The morphology of the isolated egg cell corresponds to the morphology of the egg cell in situ and is comparable to the morphology of egg cells of other monocotyledons and angiosperms. Two hours after isolation the egg cells were still viable. The protocol proved reproducible and the yield was determined at 10%.  相似文献   

16.
An expressed sequence tag (EST) library of the key grassland species perennial ryegrass (Lolium perenne L.) has been exploited as a resource for microsatellite marker development. Out of 955 simple sequence repeat (SSR) containing ESTs, 744 were used for primer design. Primer amplification was tested in eight genotypes of L. perenne and L. multiflorum representing (grand-) parents of four mapping populations and resulted in 464 successfully amplified EST-SSRs. Three hundred and six primer pairs successfully amplified products in the mapping population VrnA derived from two of the eight genotypes included in the original screening and revealed SSR polymorphisms for 143 ESTs. Here, we report on 464 EST-derived SSR primer sequences of perennial ryegrass established in laboratory assays, providing a dedicated tool for marker assisted breeding and comparative mapping within and among forage and turf grasses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
AFLP markers have been successfully employed for the development of a high-density linkage map of ryegrass (Lolium perenne L.) using a progeny set of 95 plants from a testcross involving a doubled-haploid tester. This genetic map covered 930 cM in seven linkage groups and was based on 463 amplified fragment length polymorphism (AFLP) markers using 17 primer pairs, three isozymes and five EST markers. The average density of markers was approximately 1 per 2.0 cM. However, strong clustering of AFLP markers was observed at putative centromeric regions. Around these regions, 272 markers covered about 137 cM whereas the remaining 199 markers covered approximately 793 cM. Most genetic distances between consecutive pairs of markers were smaller than 20 cM except for five gaps on groups A, C, D, F and G. A skeletal map with a uniform distribution of markers can be extracted from this high-density map, and can be applied to detect and map QTLs. We report here the application of AFLP markers to genome mapping, in Lolium as a prelude to quantitative trait locus (QTL) identification for diverse agronomic traits in ryegrass and for marker-assisted plant breeding. Received: 4 November 1998 / Accepted:15 March 1999  相似文献   

19.
Cinnamoyl CoA-reductase (CCR) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the biosynthesis of monolignols, which serve as building blocks in the formation of plant lignin. We identified candidate genes encoding these two enzymes in perennial ryegrass (Lolium perenne) and show that the spatio-temporal expression patterns of these genes in planta correlate well with the developmental profile of lignin deposition. Downregulation of CCR1 and caffeic acid O-methyltransferase 1 (OMT1) using an RNA interference-mediated silencing strategy caused dramatic changes in lignin level and composition in transgenic perennial ryegrass plants grown under both glasshouse and field conditions. In CCR1-deficient perennial ryegrass plants, metabolic profiling indicates the redirection of intermediates both within and beyond the core phenylpropanoid pathway. The combined results strongly support a key role for the OMT1 gene product in the biosynthesis of both syringyl- and guaiacyl-lignin subunits in perennial ryegrass. Both field-grown OMT1-deficient and CCR1-deficient perennial ryegrass plants showed enhanced digestibility without obvious detrimental effects on either plant fitness or biomass production. This highlights the potential of metabolic engineering not only to enhance the forage quality of grasses but also to produce optimal feedstock plants for biofuel production.  相似文献   

20.
Nitrogen is a macronutrient present in a wide range of cellular compounds including proteins, nucleic acids, amino acids and lipids. The levels of nitrogen often regulate many aspects of plant metabolism, growth and development. Extensive research has been conducted into the effects of N nutrition in model plants, however relatively little is known about the metabolic response of perennial ryegrass (Lolium perenne) grown under different N-supply conditions. This study aimed to identify key metabolic responses activated rapidly after challenging plants with different levels of N-supply. The metabolic response of the leaves of seven different L. perenne genotypes to three N treatments (low, medium and high levels of N) was characterized using a GC–MS approach. After 24 h it was observed that the levels of amino acids correlated with the levels of N-supply. Furthermore the results indicated that plants experiencing N-limitation accumulated very-long chain fatty acids and precursors of secondary aromatic metabolites while sugar levels were not significantly affected indicating a remobilization of carbon. Plants grown under high levels of N were found to have enhanced levels of inositol and threonic acid which could reflect an alteration of the redox potential under stress. Further analysis of Pearson’s correlation coefficient provided evidence that the chlorophyll metabolism may also be regulated in plants grown at high N concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号