首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cheung AK 《Journal of virology》2004,78(17):9016-9029
Palindromic sequences (inverted repeats) flanking the origin of DNA replication with the potential of forming single-stranded stem-loop cruciform structures have been reported to be essential for replication of the circular genomes of many prokaryotic and eukaryotic systems. In this study, mutant genomes of porcine circovirus with deletions in the origin-flanking palindrome and incapable of forming any cruciform structures invariably yielded progeny viruses containing longer and more stable palindromes. These results suggest that origin-flanking palindromes are essential for termination but not for initiation of DNA replication. Detection of template strand switching in the middle of an inverted repeat strand among the progeny viruses demonstrated that both the minus genome and a corresponding palindromic strand served as templates simultaneously during DNA biosynthesis and supports the recently proposed rolling-circle "melting-pot" replication model. The genome configuration presented by this model, a four-stranded tertiary structure, provides insights into the mechanisms of DNA replication, inverted repeat correction (or conversion), and illegitimate recombination of any circular DNA molecule with an origin-flanking palindrome.  相似文献   

2.
3.
The goal of this study was to determine whether bypass replication occurs by translesion synthesis or template switching (copy choice) when a duplex molecule carrying a single cis,syn-cyclobutane thymine dimer is replicated in vitro by human cell extracts. Circular heteroduplex DNA molecules were constructed to contain the SV40 origin of replication and a mismatch opposite to or nearby the dimer. Control molecules with only the mismatch were also prepared. Heteroduplexes were methylated at CpG islands and replicated in vitro (30 min). Following bisulfite treatment, the nascent DNA complementary to the dimer-containing template was distinguished from the other three strands by methylation-specific polymerase chain reaction. Cloning and sequencing of polymerase chain reaction products revealed that 80-98% carried the sequence predicted for translesion synthesis, with two adenines incorporated opposite the dimer. The fraction of clones with sequence predictive of template switching was reduced when extracts deficient in mismatch repair or nucleotide excision repair activities were used to replicate the heteroduplex molecules. These results support the conclusion that lesion bypass during in vitro replication of duplex DNA containing thymine dimers occurs by translesion synthesis.  相似文献   

4.
The origin of DNA replication of porcine circovirus (PCV) was mapped to a 111-bp fragment. On top of a hairpin, a nonanucleotide (TAGTATTAC) homologous to nonanucleotides of other viruses was identified. Mutation of this element abolishes replication. PCV may be related to a virus family characterized by single-stranded circular DNA genomes, rolling-circle replication, and homology of their rep proteins.  相似文献   

5.
Circoviruses are the smallest circular single-stranded DNA viruses able to replicate in mammalian cells. Essential to their replication is the replication initiator, or Rep protein that initiates the rolling circle replication (RCR) of the viral genome. Here we report the NMR solution three-dimensional structure of the endonuclease domain from the Rep protein of porcine circovirus type 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome in swine. The domain comprises residues 12-112 of the full-length protein and exhibits the fold described previously for the Rep protein of the representative geminivirus tomato yellow leaf curl Sardinia virus. The structure, however, differs significantly in some secondary structure elements that decorate the central five-stranded beta-sheet, including the replacement of a beta-hairpin by an alpha-helix in PCV2 Rep. The identification of the divalent metal binding site was accomplished by following the paramagnetic broadening of NMR amide signals upon Mn(2+) titration. The site comprises three conserved acidic residues on the exposed face of the central beta-sheet. For the 1:1 complex of the PCV2 Rep nuclease domain with a 22mer double-stranded DNA oligonucleotide chemical shift mapping allowed the identification of the DNA binding site on the protein and aided in constructing a model of the protein/DNA complex.  相似文献   

6.
Stem-loop hairpins formed by mitochondrial light strand replication origins (OL) and by heavy strand DNA coding for tRNAs that form OL-like structures initiate mitochondrial replication. The loops are recognized by one of the two active sites of the vertebrate mitochondrial gamma polymerase, which are homologuous to the active sites of class II amino-acyl tRNA synthetases. Therefore, the polymerase site recognizing the OL loop could recognize tRNA anticodon loops and sequence similarity between anticodon and OL loops should predict initiation of DNA replication at tRNAs. Strengths of genome-wide deamination gradients starting at tRNA genes estimate extents by which replication starts at that tRNA. Deaminations (A→G and C→T) occur proportionally to time spent single stranded by heavy strand DNA during mitochondrial light strand replication. Results show that deamination gradients starting at tRNAs are proportional to sequence similarity between OL and tRNA loops: most for anticodon-, least D-, intermediate for TψC-loops, paralleling tRNA synthetase recognition interactions with these tRNA loops. Structural and sequence similarities with regular OLs predict OL function, loop similarity is dominant in most tRNAs. Analyses of sequence similarity and structure independently substantiate that DNA sequences coding for mitochondrial tRNAs sometimes function as alternative OLs. Pathogenic mutations in anticodon loops increase similarity with the human OL loop, non-pathogenic polymorphisms do not. Similarity/homology alignment hypotheses are experimentally testable in this system.  相似文献   

7.
The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands.  相似文献   

8.
Nuclear DNA is looped by attachment to a matrix or cage. As this cage is the site of DNA synthesis, sequences in the loops must attach before they are replicated. We have tested whether sequences which initiate replication are usually out in the loop and attach only during S phase or whether they are attached but quiescent during most of the cell-cycle. Sequences which permit plasmids to replicate autonomously in yeast cells (ARS's) are strong candidates for initiating sequences. Four different human ARS's all map remote from attachment points to the HeLa nuclear cage. In addition a potential terminus of replication is also remote from the cage. We conclude that sequences involved in initiation are usually out in the loop and that DNA synthesis is initiated by their attachment.  相似文献   

9.
The quest for stem cell properties to distinguish their identity from that of committed daughters has led to a re-investigation of the notion that DNA strands are not equivalent, and 'immortal' DNA strands are retained in stem cells whereas newly replicated DNA strands segregate to the differentiating daughter cell during mitosis. Whether this process occurs only in stem cells, and also in all tissues, remains unclear. That individual chromosomes can be also partitioned non-randomly raises the question if this phenomenon is related to the immortal DNA hypothesis, and it underscores the need for high-resolution techniques to observe these events empirically. Although initially postulated as a mechanism to avoid DNA replication errors, alternative views including epigenetic regulation and sister chromatid silencing may provide insights into this process.  相似文献   

10.
Bloom's syndrome (BS) is a rare genetic disorder and the cells from BS patients show genomic instability and an increased level of sister chromatid exchange (SCE). We generated BLM(-/-) and BLM(-/-)/RAD54(-/-) DT40 cells from the chicken B-lymphocyte line DT40. The BLM(-/-) DT40 cells showed higher sensitivity to methyl methanesulfonate and elevated levels of SCE as expected. The targeted integration frequency was also increased remarkably in BLM(-/-) cells. The SCE frequency increase in BLM(-/-) cells was considerably reduced and the enhanced targeted integration observed in BLM(-/-) cells was almost completely abolished in BLM(-/-)/RAD54(-/-) cells, indicating that a large portion of the SCE in BLM(-/-) cells occurs via homologous recombination, and homologous recombination events increase with the defect of BLM function. The BLM(-/-)/RAD54(-/-) cells showed a slow growth phenotype and an increased incidence of chromosome-type breaks/gaps while each single mutant showed relatively small numbers of chromosome-type breaks/gaps.  相似文献   

11.
12.
Daughter strand gaps formed upon interruption of replication at DNA lesions in Escherichiacoli can be repaired by either translesion DNA synthesis or homologous recombination (HR) repair. Using a plasmid-based assay system that enables discrimination between strand transfer and template switching (information copying) modes of HR gap repair, we found that approximately 80% of strand gaps were repaired by physical strand transfer from the donor, whereas approximately 20% appear to be repaired by template switching. HR gap repair operated on both small and bulky lesions and largely depended on RecA and RecF but not on the RecBCD nuclease. In addition, we found that HR was mildly reduced in cells lacking the RuvABC and RecG proteins involved in resolution of Holliday junctions. These results, obtained for the first time under conditions that detect the two HR gap repair mechanisms, provide in vivo high-resolution molecular evidence for the predominance of the strand transfer mechanism in HR gap repair. A small but significant portion of HR gap repair appears to occur via a template switching mechanism.  相似文献   

13.
T A Gahn  C L Schildkraut 《Cell》1989,58(3):527-535
Epstein-Barr virus (EBV) oriP contains two components, a dyad symmetry element and a direct repeat element, that, in the presence of EBV nuclear antigen 1, are necessary and sufficient for plasmid replication. We have examined the replicative forms generated by EBV oriP using 2D gel electrophoresis. The patterns obtained from an oriP plasmid in a transfected cell line indicate that the site of initiation of DNA replication is at or very near the dyad symmetry element, while the direct repeats contain a replication fork barrier and the termination site. Thus, replication from oriP proceeds in a predominantly undirectional manner. The patterns obtained from cells immortalized by EBV suggest that replication from oriP proceeds similarly in the viral genome.  相似文献   

14.
Lovett ST 《Molecular cell》2007,27(4):523-526
Our view of DNA replication has been of two coupled DNA polymerases anchored to the replication fork helicase in a "replisome" complex, synthesizing leading and lagging strands simultaneously. New evidence suggests that three DNA polymerases can be accommodated into the replisome and that polymerases and repair factors are dynamically recruited and engaged without dismantling of the replisome.  相似文献   

15.
16.
The primosome is a mobile multiprotein priming apparatus that requires seven Escherichia coli proteins for assembly (the products of the dnaB, dnaC and dnaG genes; replication factor Y (protein n'); and proteins i, n, and n"). While the primosome is analagous to the phage T7 gene 4 protein and phage T4 gene 41/61 proteins in its DNA G-catalyzed priming function, its ability to act similarly also as a DNA helicase has remained equivocal. The role of the primosome in unwinding duplex DNA strands was investigated in the coliphage phi X174 SS(c)----replicative form DNA replication reaction in vitro, which requires the E. coli single-stranded DNA binding protein, the primosomal proteins, and the DNA polymerase III holoenzyme. Multigenome-length, linear, double-stranded DNA molecules were generated in this reaction, presumably via a rolling circle-type mechanism. Synthesis of these products required the presence of a helicase-catalyzed strand-displacement activity to permit multiple cycles of continuous complementary (-) strand synthesis. The participation of the primosome in this helicase activity was supported by demonstrating that other SS(c) DNA templates (G4 and alpha-3), which lack primosome assembly sites, failed to support significant linear multimer production and that replication of phi X174 with the general priming system (the DNA B and DNA G proteins and DNA polymerase III holoenzyme) resulted in a 13-fold lower rate of linear multimer synthesis.  相似文献   

17.
Electron microscopy (EM) was used to visualize intermediates of in vitro replication of closed circular DNA plasmids. Cell-free extracts were prepared from human cells that are proficient (IDH4, HeLa) or deficient (CTag) in bypass replication of pyrimidine dimers. The DNA substrate was either undamaged or contained a single cis, syn thymine dimer. This lesion was inserted 385 bp downstream from the center of the SV40 origin of replication and sited specifically in the template to the leading strand of the newly synthesized DNA. Products from 30 minute reactions were crosslinked with psoralen and UV, linearized with restriction enzymes and spread for EM visualization. Extended single-stranded DNA regions were detected in damaged molecules replicated by either bypass-proficient or deficient extracts. These regions could be coated with Escherichia coli single-stranded DNA binding protein. The length of duplex DNA from a unique restriction site to the single-stranded DNA region was that predicted from blockage of leading strand synthesis by the site-specific dimer. These results were confirmed by S1nuclease treatment of replication products linearized with single cutting restriction enzymes, followed by detection of the diagnostic fragments by gel electrophoresis. The absence of an extended single-stranded DNA region in replication forks that were clearly beyond the dimer was taken as evidence of bypass replication. These criteria were fulfilled in 17 % of the molecules replicated by the IDH4 extract.  相似文献   

18.
Analysis of folded chromosomes prepared from amino acid-starved E. coli cells or from a dnaC initiation mutant indicates that a unique structure is associated with completion or near completion of rounds of chromosome replication in E. coli. Chromosomes remain associated with portions of the bacterial cell envelope throughout the DNA replication cycle, but become more rapidly sedimenting as replication proceeds in the absence of reinitiation. Before reinitiation of chromosome replication occurs after restoring required amino acids to amino acid-starved cells or after lowering the temperature in a thermosensitive dnaC mutant, sedimentation velocities of the membrane-associated folded chromosomes decrease substantially. The decrease in sedimentation velocity does not depend on renewed DNA synthesis, but does require the activity of at least the dnaC gene product.  相似文献   

19.
Early in the staged initiation of enzymatic replication of plasmids containing the unique origin of the E. coli chromosome (oriC), the plasmid is converted to a new topological form which is highly underwound, two to 15 times more than native supercoiled DNA. The underwinding reaction precedes priming of DNA synthesis and follows an initial complex formation, requiring ATP and proteins dnaA, dnaB, and dnaC; underwinding depends on the further addition of gyrase and SSB. DnaB protein as a helicase and gyrase as a topoisomerase drive the underwinding with the energy of ATP hydrolysis. The underwound template, extensively single-stranded and complexed with proteins, is an active form for priming by primase and elongation by DNA polymerase III holoenzyme.  相似文献   

20.
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64-66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39-57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase alpha and delta as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase alpha and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase alpha holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789-4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase alpha is blocked with the DNA polymerase alpha specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase delta can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号