首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid composition of plasma membranes and tonoplasts from etiolated mung bean hypocotyls was examined in detail. Phospholipids, sterols, and ceramide monohexoside(s) were the major lipid classes in both membranes. The content of phospholipids on a protein basis was higher in the tonoplast, but the content of total sterols was similar in both membranes. Accordingly, the sterol to phospholipid molar ratio in the plasma membrane was higher than that of the tonoplast. Phosphatidylethanolamine and phosphatidylcholine comprised the major phospholipids in both membranes. Phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were identified as minor phospholipid components. The content of phosphatidylinositol and phosphatidylglycerol was relatively high in the tonoplast, comprising 11 and 5% of the total phospholipids, respectively. Although special care was taken against the degradative action of phospholipase D and phosphatidic acid phosphatase during the isolation of these membranes, by adding EDTA, EGTA, KF, choline, and ethanolamine to the homogenizing medium, significant amounts of phosphatidic acid, about 15% of the total phospholipids, were detected in the plasma membrane. On the other hand, the content of phosphatidic acid in tonoplasts and other membrane fractions was very low. This fact may indicate that high levels of phosphatidic acid occur naturally in plasma membranes. Phosphatidylglycerol in both membranes and phosphatidylinositol in the tonoplast contained high levels of palmitic acid, which comprised more than 50% of the total fatty acids. Significant differences were observed in the sterol compositions of plasma membranes and tonoplasts. More than 90% of the sterols in the plasma membrane were unesterified, while the tonoplast was enriched in glycosylated sterols, especially acylated sterylglycosides. Ceramide monohexoside was found to be specifically located in these membranes, in particular, in the tonoplast, in which it comprised nearly 17% of the total lipids.  相似文献   

2.
Lipid composition of the isolated rat intestinal microvillus membrane   总被引:13,自引:4,他引:9  
1. Rat intestinal microvillus plasma membranes were prepared from previously isolated brush borders and the lipid composition was analysed. 2. The molar ratio of cholesterol to phospholipid was greatest in the membranes and closely resembled that reported for myelin. 3. Unesterified cholesterol was the major neutral lipid. However, 30% of the neutral lipid fraction was accounted for by glycerides and fatty acid. 4. Five phospholipid components were identified and measured, including phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine. Though phosphatidylethanolamine was the chief phospholipid, no plasmalogen was detected. 5. In contrast with other plasma membranes in the rat, the polar lipids of the microvillus membrane were rich in glycolipid. The cholesterol:polar lipid (phospholipid+glycolipid) ratio was about 1:3 for the microvillus membrane. Published data suggest that this ratio resembles that of the liver plasma membrane more closely than myelin or the erythrocyte membrane. 6. The fatty acid composition of membrane lipids was altered markedly by a single feeding of safflower oil. Membrane polar lipids did not contain significantly more saturated fatty acids than cellular polar lipids. Differences in the proportion of some fatty acids in membrane and cellular glycerides were noted. These differences may reflect the presence of specific membrane glycerides.  相似文献   

3.
Nuclei, nuclear membranes and rough endoplasmic reticulum (rER) were isolated from onion root tips and stems. Structural preservation and purity of the fractions was determined by electron microscopic and biochemical methods. Gross compositional data (protein, phospholipid, nonpolar lipids, sterols, RNA, DNA), phospholipid and fatty acid patterns, enzyme activities (ATPases, ADPase, IDPase, glucose-6-phosphatase, 5'-nucleotidase, acid phosphatase, and NADH- and NADPH-cytochrome C reductases), and cytochrome contents were determined. A stable, high salt-resistant attachment of some DNA with the nuclear membrane was observed as well as the association of some RNA with high salt-treated nuclear and rER membranes. The phospholipid pattern was identical for both nuclear and rER membranes and showed a predominance of lecithin (about 60%) and phosphatidyl ethanolamine (20-24%). Special care was necessary to minimize lipid degradation by phospholipases during isolations. Nonpolar lipids, mostly sterols and triglycerides, accounted for 35-45% of the membrane lipids. Sterol contents were relatively high in both membrane fractions (molar ratios of sterols to phospholipids ranged from 0.12 to 0.43). Sitosterol accounted for about 80% of the total sterols. Palmitic, oleic, and linoleic acids were the most prevalent acids in membrane-bound lipids as well as in storage lipids and occurred in similar proportions in phospholipids, triglycerides and free fatty acids of the membrane. About 80% of the fatty acids in membrane phospholipids and triglycerides were unsaturated. A cytochrome of the b5 type was characterized in these membranes, but P-450-like cytochromes could not be detected. Both NADH and NADPH-cytochrome c reductases were found in nuclear and rER membranes and appeared to be enriched in rER membranes. Among the phosphatases, Mg2+-ATPase and, to lesser extents, ADPase, IDPase and acid phosphatase activities occurred in the fractions, but significant amounts of monovalent ion-stimulated ATPase, 5'-nucleotidase and glucose-6-phosphatase activities did not. The results obtained emphasize that the close biochemical similarities noted between rER and nuclear membranes of animal cells extend to these fractions from plant cells.  相似文献   

4.
The cell membrane of Mycoplasma mobile was isolated by either ultrasonic or French press treatment of intact cells. The membrane fraction contained all of the cellular lipids, but only one-third of cellular proteins and had a density of 1.14 g ml-1. The soluble fraction contained the NADH dehydrogenase activity of the cells, as well as a protein with an apparent molecular mass of 55 kDa that was phosphorylated in the presence of ATP. Lipid analyses of M. mobile membranes revealed that membrane lipid could be labelled by radioactive glycerol, oleate and to a much higher extent by palmitate but not by acetic acid. The membrane lipid fraction was composed of 54% neutral and 46% polar lipid. The major constituents of the neutral lipid fraction were free fatty acid, free cholesterol and cholesterol esters (45, 25 and 20%, respectively, of total neutral lipid fraction). The free cholesterol count was 13% (w/w) of total membrane lipids with a cholesterol:phospholipid molar ratio of about 0.9. Among the polar lipids, both phospho- and glycolipids were detected. The phospholipid fraction consisted of a major de novo-synthesized phosphatidylglycerol (approximately 63% of total phospholipids), plus exogenous phosphatidylcholine and sphingomyelin incorporated in an unchanged form from the growth medium. The glycolipid fraction was dominated by a single glycolipid (approximately 90% of total glycolipids) that was preferentially labelled by palmitic acid and showed a very high saturated:unsaturated fatty acids ratio.  相似文献   

5.
The phospholipid content of rough and smooth microsomal fractions from cotyledons of germinating bean declines as the tissue becomes senescent. Both types of membrane contain comparable proportions of three major phospholipids, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol, which collectively comprise about 90% of the total. This proportionality does not change appreciably during senescence. Only small quantities of lysophosphatides were noted at all stages of senescence. The unsaturated:saturated fatty acid ratio for total extracted lipid declined only slightly in both membrane systems, but pronounced differences in this ratio were observed among the major phospholipids of the membranes. The most striking alteration in lipid composition with advancing senescence was an increase in the sterol:phospholipid ratio; this rose by about 50% for rough microsomes and 400% for smooth microsomes. For both types of membrane the patterns of change in this ratio correlated with previously reported changes in bulk lipid transition temperature, suggesting that the increase in sterol level may contribute to changes in phase behaviour of the membranes during senescence. Arrhenius plots of rotational correlation times for the electron spin label 2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide (2N14) partitioned into the membrane lipid showed an increase in viscosity with advancing senescence and a corresponding increase in activation energy for both types of membrane. These changes in activation energy and viscosity correlated closely with the increase in sterol:phospholipid ratio. However, no phase transitions were detectable between temperatures of 2 and 55 degrees C despite the fact that transitions from a lipid-crystalline to gel state are detectable within this temperature range by wide angle X-ray diffraction.  相似文献   

6.
The degree of fatty acid unsaturation and average chain length are closely similar for microsomal membranes from exponential-phase trophozoites and cysts ofAcanthamoeba castellanii despite significant differences in fatty acid composition. The same trend was apparent for total fatty acids extracted from whole cells. The observations suggest that the organism regulates these lipid parameters during differentiation in order to maintain optimum membrane lipid viscosity, and are consistent with previous electron spin resonance measurements indicating that the fluidity of microsomal membranes does not change during encystment. About 75% of the microsomal fatty acids are unsaturated for both cysts and amoebae. Wide-angle X-ray diffraction of phospholipid liposomes prepared from lipid extracts of the membranes has indicted that this high level of unsaturation renders the phospholipid exclusively liquid-crystalline at temperatures as low as 9°C for rough microsomes and-1.5°C for smooth microsomes. Thus, by retaining a high proportion of unsaturated fatty acids throughout its differentiation cycle, the organism gains some protection in its natural soil habitat against lateral phase separation of membrane lipids.  相似文献   

7.
Isolation, Composition, and Structure of Membrane of Listeria monocytogenes   总被引:6,自引:6,他引:0  
The plasma membrane of Listeria monocytogenes strain 42 was prepared by osmotic lysis of protoplasts with tris(hydroxymethyl)aminomethane (Tris) buffer, pH 8.2, containing MgCl2 and glucose, followed by washing with NaCl and MgCl2 in Tris buffer. Electron microscopy showed that the preparation was not contaminated with cytoplasmic material. The membrane preparation was composed of 55 to 60% protein, 1.5% ribonucleic acid, 0.1% deoxyribonucleic acid, 1.3 to 2.3% carbohydrate, 0.17 to 0.38% amino sugar, 0.2 to 0.4% rhamnose, 3.5 to 4.0% phosphorus, 10.5 to 12.0% nitrogen, and 30 to 35% lipid. Amino acid composition of the washed membrane showed some variation from that of the whole cells. Sulfur-containing amino acids were not present in the membrane hydrolysate. The membrane carbohydrate contained glucose, galactose, ribose, and arabinose. The membrane lipid was 80 to 85% phospholipid and 15 to 20% neutral lipid. The lipid contained 2.3 to 3.0% phosphorus, 2.5 to 3.0% carbohydrate, and a very small amount of nitrogen (0.2 to 0.3%). The phospholipid was of the phosphatidyl glycerol type. Electron micrographs of the washed membrane showed three layers. The outer and inner layers varied in thickness from 25 to 37 A and the middle layer from 20 to 25 A. The total thickness varied between 85 and 100 A. These preparations contained many vesicles which stained heavily with lead citrate. Some vesicles were also attached to the protoplast ghosts in the form of extrusions or intrusions, or both. Membrane preparations obtained by lysis of protoplasts in the absence of MgCl2 were fragmented and contained less lipid (20 to 22%) and ribonucleic acid (0.3 to 0.5%) than preparations prepared with MgCl2.  相似文献   

8.
Protoplasts prepared from Bacillus subtilis by lysozyme digestion lysed in the presence of pure pancreatic phospholipase A(2). The phospholipids cardiolipin, phosphatidylethanolamine, phosphatidylglycerol and lysylphosphatidylglycerol, which are present in the membrane, are degraded by phospholipase A(2) only after removal of the cell wall, giving free fatty acids and lyso derivatives. The four phospholipids are hydrolyzed equally well at a given enzyme concentration. Differences in the phospholipid composition of the protoplasts were obtained by variations in the growth medium, time of harvesting, and preincubation time with lysozyme. The extent of hydrolysis appeared to depend on the initial phospholipid composition. A relative increase in acidic phospholipids in the membrane facilitated the action of phospholipase A(2), whereas the rate of hydrolysis was diminished when protoplasts were tested which contained a relatively high amount of positively charged phospholipid. Pure phospholipase C from B. cereus preferentially hydrolyzed phosphatidyl-ethanolamine in the B. subtilis membrane. More than 80% of this phospholipid was converted into diglyceride, whereas only 30% of the cardiolipin was hydrolyzed. Such a loss of phospholipids, however, was not followed by lysis of the protoplasts. Liposomes were prepared from the lipid extracts of B. subtilis and incubated with both phospholipases. The hydrolysis pattern of the phospholipids in these model membrane systems was identical to the hydrolysis pattern of the phospholipids in the protoplast membrane. Phospholipase A(2) hydrolyzed all the phospholipids in the liposomes equally well, whereas phospholipase C preferentially degraded phosphatidylethanolamine.  相似文献   

9.
Summary This paper reports an analysis of the lipid and polypeptide composition of a tetrodotoxin (TTX)-binding plasma membrane fraction of the eel electroplaque. Phospholipids comprise 73% of the total lipid with cholesterol and neutral glycerides constituting about 21 and 6%, respectively. The major phospholipids are phosphatidylcholine (47.3%), phosphatidylethanolamine (32.6%), phosphatidylserine (13.1%), and sphingomyelin (4.5%). Phosphatidylinositol and phosphatidic acid are minor components. Plasmalogens comprise approximately 19% of the total phosphatidylethanolamine. Each major phospholipid class was analyzed for fatty acyl composition. The results indicate a unique distribution profile for each class with respect to chain length and unsaturation. PE and PS both contain high percentages of polyunsaturated fatty acids particularly docosahexaenoic acid with constitutes 35 and 39% of the total fatty acids, respectively. However, PC and PS contain significantly lower levels of polyunsaturated fatty acids. The lipid profile observed in this preparation is compared to those previously reported for membranes from other excitable tissues. Polyacrylamide gel electrophoresis of the membranes indicates a complex distribution of peptides with several major species and at least 30 minor components. Two of the major species have molecular weights corresponding to those of the two subunits of the (Na++K+)-ATPase.  相似文献   

10.
An accelerated degradation of phospholipid is the likely basis of irreversible cell injury in ischemia, and the membranes of the endoplasmic reticulum of the liver are a convenient system with which to study the effect of such a disturbance on the structure and function of cellular membranes. In the present report, electron spin resonance spectroscopy has been used to evaluate changes in the molecular ordering of microsomal membrane phospholipids in the attempt to relate the loss of lipid to alterations in membrane structure. The order parameter, S, was calculated from spectra reflecting the anisotropic motion of 12-doxyl stearic acid incorporated into normal and 3-h ischemic microsomal membranes. Over the temperature range 4-40 degrees C, the molecular order (S) of ischemic membranes was increased by 8-10%. This increase was reproduced in the ordering of the phospholipids in liposomes prepared from total lipid extracts of the same membranes. In contrast, after removal of the neutral lipids, liposomes prepared from phospholipids of ischemic and control membranes had the same molecular order. There were no differences in the phospholipid species of control and ischemic membranes or in the fatty acid composition of the phospholipids. In the neutral lipid fraction of ischemic membranes, however, triglycerides and cholesterol were increased compared to control preparations. There were no free fatty acids. The total cholesterol content of the liver was unchanged after 3 h of ischemia. The cholesterol-to-phospholipid ratio of ischemic membranes, however, was increased by 22% from 0.258 to 0.315 as a consequence of the loss of phospholipid. Addition of cholesterol to the control total lipid extracts to give a cholesterol-to-phospholipid ratio the same as in ischemic membranes resulted in liposomes with order parameters similar to those of liposomes prepared from ischemic total lipids. It is concluded that the degradation of the phospholipids of the microsomal membrane results in a relative increase in the cholesterol-to-phospholipid ratio. This is accompanied, in turn, by an increased molecular order of the residual membrane phospholipids.  相似文献   

11.
A pantothenic acid deficiency in Lactobacillus plantarum reduces lipid synthesis, prevents normal uptake and retention of extracellular amino acids and markedly increases sensitivity of these cells to lysozyme induced lysis. Pantothenate-deficient cells provided with exogenous fatty acids synthesize additional lipids and express nearly normal solute transport activities. The present study has shown that such cells retain a heightened sensitivity to lysozyme induced lysis. These observations indicate that the lysozyme sensitivity of pantothenate-deficient cells is not produced as in indirect effect of membrane lipid depletion, but represents an independent consequence of pantothenate insufficiency.  相似文献   

12.
In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic and docosahexaenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.  相似文献   

13.
Conditions were defined for producing protoplasts with lysozyme and isolating the protoplast membranes from cells of Bacillus cereus T harvested late in the exponential growth phase just before sporogenesis. The membranes contained approximately 60% protein, 30% lipid, 6% carbohydrate, and 1% ribonucleic acid. Seventeen proteins were distinguished by molecular size in the membrane solubilized with sodium dodecyl sulfate, and 12 in that with phenol and acetic acid. The lipid fraction consisted of neutral lipids (28%) and phospholipids (72%). Four phospholipids were identified: diphosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl glycerol, and lysophosphatidyl ethanolamine. Eighteen fatty acids were identified, with a predominance of branched C(15) and C(17) and of normal C(16) acids. The carbohydrate fraction consisted of neutral hexoses. A clear supernatant solution from the solubilized preparation became reaggregated into membrane by dialysis in the presence of MgCl(2). The reaggregated membrane had the same main components as the native membrane, but the amount and ratio of protein and lipid depended on the buffer and the MgCl(2) concentration. By electron microscopy, the reaggregated membranes appeared as vesicles or sheets, depending on the MgCl(2) concentration. Hexagonal lattices were occasionally detected in the negatively stained ultrastructure of both native and reaggregated membrane fragments.  相似文献   

14.
1. The lipid fraction extracted from the outer and cytoplasmic membranes of Proteus mirabilis with chloroform/methanol consisted almost entirely of phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. 2. The phospholipid content of the cytoplasmic membrane was more than twice that of the outer membrane (38% as against 18% of the total dry weight) and the proportions of the three phospholipids differed somewhat in the two membranes. Yet, the fatty acid composition of the extractable lipids was essentially the same in both membranes. 3. The freedom of motion of spin-labeled fatty acids in the outer membrane of P. mirabilis depended markedly on temperature and on the position of the nitroxide group on the hydrocarbon chain of the probe, suggesting that the local environment of the probe is an associate lipid structure with the properties of a bilayer. Nevertheless, the mobility of the probe was more restricted in the outer membrane than in the cytoplasmic membrane, indicating a higher viscosity of the outer membrane. 4. Chloroform/methanol completely removed the phospholipids from the outer membrane, leaving the lipopolysaccharide moiety intact. The motion of spin-labeled fatty acids in the extracted membranes was, however, highly restricted, suggesting that, in the native outer membrane, the local environment of the probe is composed of phospholipids rather than lipopolysaccharide. Aqueous acetone extraction removed only 75-80% of the phospholipids of the outer membrane. Nevertheless, the mobility of the spin-labeled fatty acid remained highly restricted, suggesting the existence of two phospholipid environments in the outer membrane differing in the nature of their association with the lipopolysaccharide and protein moieties.  相似文献   

15.
The lipid fluidity of microsomal membranes from the petals of cut carnation flowers decreases as the flowers senesce. A comparable change in fluidity was induced by in vitro aging of microsomal membranes from young flowers under conditions in which membranous lipoxygenase-like activity was active. There was no change in fluidity when the membranes were aged in the presence of inhibitors of lipoxygenase or were heat-denatured prior to aging. Membranes from naturally senesced flowers and membranes that had been aged in vitro both sustained an increase in saturated:unsaturated fatty acid ratio that accounted for the decrease in lipid fluidity, and in both instances there was evidence for depletion of the unsaturated fatty acids, linoleic acid, and linolenic acid, which are substrates for lipoxygenase. Loss of lipid phosphate reflecting breakdown of membrane phospholipids preceded the depletion of unsaturated fatty acids attributable to the lipoxygenase-like activity. The data have been interpreted as indicating that fatty acid substrates for membrane-associated lipoxygenase-like activity are made available by the initiation of phospholipid degradation, and that the utilization of these substrates results in a selective depletion of unsaturated fatty acids from the membrane and an ensuing decrease in bulk lipid fluidity.  相似文献   

16.
The fatty acid composition of the lipid A moiety of the lipopolysaccharide and phospholipid fractions of Proteus mirabilis changed significantly on varying the growth temperature. A decrease in the growth temperature from 43 degrees C to 15 degrees C resulted in a decrease in the palmitic acid content of the lipopolysaccharide from 19.4% of total fatty acids at 43 degrees C to 1.4% at 15 degrees C, and by the appearance of an unsaturated fatty acid residue, hexadecenoic acid. Changes in the 3-hydroxy-myristic acid content of the lipid A were minimal. The decrease in the growth temperature also resulted in a decrease in the saturated fatty acid content of the phospholipid fraction, which was accompanied by an increase in their fluidity, as measured by the freedom of motion of spin-labeled fatty acids incorporated into dispersions made of the phospholipids. Nevertheless, the fluidity obtained with membrane phospholipids extracted from the cells grown at various temperatures were essentially the same when fluidity was determined at the growth temperature, supporting the hypothesis that variations in the fatty acid composition of membrane phospholipids serve to produce membranes having a constant fluidity at different temperatures of growth.  相似文献   

17.
The total lipid composition of highly purified plasma membranes from light-grown barley (Hordeum vulgare) leaves was investigated. The plasma membranes were separated from intracellular membranes by subfractionation of the microsomal fraction using aqueous polymer two-phase partitioning. A novel finding was that glucocerebroside was a major lipid of the plasma membrane (23 mol%). The most abundant lipid class in the plasma membrane was phospholipid (42 mol%), consisting mainly of phosphatidylcholine and phosphatidylethanolamine, together with free sterols at a level of 28 mol%. The only free sterols of the plasma membrane were campesterol (15%), stigmasterol (23%), and sitosterol (62%). The plasma membrane contained a relatively high proportion of saturated fatty acids compared to the bulk of intracellular membranes, the major components of the plasma membrane being palmitic (16:0), linoleic (18:2), and linolenic (18:3) acids in approximately equal amounts.  相似文献   

18.
1. The cholesterol and phospholipid content of the surface membranes of ascites tumor cells cultivated in lipid-depleted medium was reduced to about 60(70)% of the control, but the relative composition of the individual phospholipids was not altered. 2. Differences in lipid composition were also observed between the two plasma membrane domains isolated from the cells cultured in normal and lipid-depleted medium respectively. 3. The fatty acid spectrum of the lipid-depleted membranes showed a greater fraction of saturated vs unsaturated acids. 4. The membrane lipid fluidity measured by fluorescence polarization was decreased in the modified surface membranes. 5. The 5'-nucleotidase specific activity was drastically reduced (46-66%) in the lipid-deleted membranes, and in addition its distribution between the two vesicle fractions was altered.  相似文献   

19.
Liver plasma membranes isolated from rats with chronic dietary iron overload showed a large modification of their phospholipid fatty acid composition. Specifically, a significant decrease in polyunsaturated fatty acids and a parallel increase in saturated fatty acids was observed. This pattern was consistent with thein vivo occurrence of lipoperoxidative reactions in the liver plasma membranes. However, neither change in the cholesterol/phospholipid molar ratio nor in the lipid/protein ratio was detected. Direct measurement of the plasma membrane fluidity state by electron spin resonance spectrometry did not reveal any difference between control and iron-treated rats. These findings indicate that chronic dietary iron overload can induce lipid peroxidation of rat liver plasma membranes, but this event does not bring about modification in the physical state of the membrane.  相似文献   

20.
The membrane fatty acyl composition of lymphocytes was altered by growth in lipid-depleted serum containing fatty acid supplements, as well as avidin to block endogenous synthesis of fatty acids. Under these growth conditions over 50% of the total fatty acid in membrane phospholipid were derived from the added fatty acid. Enrichment of lymphocyte membranes with oleate (cis C18:1) or elaidate (trans C18:1) shifted the optimum temperature for mitogenic stimulation by concanavalin A as measured by [3H]thymidine incorporation. These results suggest that the fluidity of the membrane lipid phase plays a role in the process of lymphocyte stimulation by lectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号