首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The brine-seawater interface of the Kebrit Deep, northern Red Sea, was investigated for the presence of microorganisms using phylogenetic analysis combined with cultivation methods. Under strictly anaerobic culture conditions, novel halophiles were isolated. The new rod-shaped isolates belong to the halophilic genus Halanaerobium and are the first representatives of the genus obtained from deep-sea, anaerobic brine pools. Within the genus Halanaerobium, they represent new species which grow chemoorganotrophically at NaCl concentrations ranging from 5 to 34%. The cellular fatty acid compositions are consistent with those of other Halanaerobium representatives, showing unusually large amounts of Delta7 and Delta11 16:1 fatty acids. Phylogenetic analysis of the brine-seawater interface sample revealed the presence of various bacterial 16S rRNA gene sequences dominated by cultivated members of the bacterial domain, with the majority affiliated with the genus Halanaerobium. The new Halanaerobium 16S rRNA clone sequences showed the highest similarity (99.9%) to the sequence of isolate KT-8-13 from the Kebrit Deep brine. In this initial survey, our polyphasic approach demonstrates that novel halophiles thrive in the anaerobic, deep-sea brine pool of the Kebrit Deep, Red Sea. They may contribute significantly to the anaerobic degradation of organic matter enriched at the brine-seawater interface.  相似文献   

2.
Types and properties of some bacteria isolated from hypersaline soils   总被引:4,自引:2,他引:2  
Five rhizosphere soil samples from the dominant xerophytic plants, and nearby root-free soil samples were obtained from a series of hypersaline soils (5.0–10.7% NaCl) from sites near Alicante in Spain. Physico-chemical analyses were made, and the bacterial flora estimated using three different plating media. Counts from rhizosphere soil were always significantly higher than those from root-free soils. A total of 211 strains isolated were purified and identified to genus level; 12 could not be classified. The range of salt concentration allowing growth was determined for each isolate, but this did not correlate with the salt content of the soil habitat. Most isolates appeared to be typical moderate halophiles (with optimum growth between 5 and 15% salts), but about half of them grew on normal media with only 0.9% naCl, a notable difference from moderately halophilic aquatic bacteria. Extreme halophiles were rare but this may have been due to an insufficient incubation period.  相似文献   

3.
In order to explore the diversity of extreme halophiles able to produce different hydrolytic enzymes (amylase, protease, lipase and DNAse) in hypersaline habitats of South Spain, a screening program was performed. A total of 43 extreme halophiles showing hydrolytic activities have been isolated and characterized. The isolated strains were able to grow optimally in media with 15–20% (w/v) total salts and in most cases, growth was detected up to 30% (w/v) total salts. Most hydrolase producers were assigned to the family Halobacteriaceae , belonging to the genera Halorubrum (22 strains), Haloarcula (nine strains) and Halobacterium (nine strains), and three isolates were characterized as extremely halophilic bacteria (genera Salicola, Salinibacter and Pseudomonas ). An extremely halophilic isolate, strain IC10, showing lipase and protease activities and identified as a Salicola strain of potential biotechnological interest, was further studied. The optimum growth conditions for this strain were 15–20% (w/v) NaCl, pH 8.0, and 37 °C. Zymographic analysis of strain IC10 detected the lipolytic activity in the intracellular fraction, showing the highest activity against p -nitrophenyl-butyrate as a substrate in a colorimetric assay, whereas the proteolytic activity was detected in the extracellular fraction. This protease degraded casein, gelatin, bovine serum albumin and egg albumin.  相似文献   

4.
Anaerobic bacteria from hypersaline environments.   总被引:12,自引:1,他引:11       下载免费PDF全文
Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the Mediterranean French coast in the Rhone Delta, is also described.  相似文献   

5.
Two new mesophilic, sporeforming, gram-positive, strictly anaerobic, rod-shaped bacteria were isolated which utilized betaine in the Stickland reaction. Strain M1 was obtained from pasteurized hypersaline sediments. Cells were motile rods and formed spherical terminal spores. Betaine was used with hydrogen and several amino acids as electron donors. In addition, several carbohydrates served as substrates. Growth required 1.5% NaCl with an optimum at 6.0% NaCl. The guanine plus cytosine content of the DNA was 26.9%. This strain is described as a new species, Clostridium halophilum.Strain W6 was isolated from marine sediments. Cells were motile rods and formed ovoid, subterminal spores. Betaine was used with hydrogen and several amino acids as electron donors. Carbohydrates were not fermented. Growth optimum was at 1.0% NaCl. The guanine plus cytosine content of the DNA was 26.1%. This strain is described as a new species, Clostridium litorale.Non standard abbreviations DMG N,N-dimethylglycine - TMA trimethylamine - PY peptone-yeast extract - PYG peptone-yeast extract-glucose  相似文献   

6.
In a study of a lake having a higher concentration of salts than the Dead Sea, all of the heterotrophic bacteria isolated were aerobes; no strictly anaerobic strains were found. Ninety percent of the strains were euryhalines and ten percent were strict halophiles. The extreme halophiles belonged to the species Halobacterium trapanicum and Halococcus morrhuae.  相似文献   

7.
The brine-seawater interface of the Kebrit Deep, northern Red Sea, was investigated for the presence of microorganisms using phylogenetic analysis combined with cultivation methods. Under strictly anaerobic culture conditions, novel halophiles were isolated. The new rod-shaped isolates belong to the halophilic genus Halanaerobium and are the first representatives of the genus obtained from deep-sea, anaerobic brine pools. Within the genus Halanaerobium, they represent new species which grow chemoorganotrophically at NaCl concentrations ranging from 5 to 34%. The cellular fatty acid compositions are consistent with those of other Halanaerobium representatives, showing unusually large amounts of Δ7 and Δ11 16:1 fatty acids. Phylogenetic analysis of the brine-seawater interface sample revealed the presence of various bacterial 16S rRNA gene sequences dominated by cultivated members of the bacterial domain, with the majority affiliated with the genus Halanaerobium. The new Halanaerobium 16S rRNA clone sequences showed the highest similarity (99.9%) to the sequence of isolate KT-8-13 from the Kebrit Deep brine. In this initial survey, our polyphasic approach demonstrates that novel halophiles thrive in the anaerobic, deep-sea brine pool of the Kebrit Deep, Red Sea. They may contribute significantly to the anaerobic degradation of organic matter enriched at the brine-seawater interface.  相似文献   

8.
Propidium monoazide (PMA) is a DNA-intercalating agent used to selectively detect DNA from viable cells by polymerase chain reaction (PCR). Here, we report that high concentrations (>5%) of sodium chloride (NaCl) prevents PMA from inhibiting DNA amplification from dead cells. Moreover, Halobacterium salinarum was unable to maintain cell integrity in solutions containing less than 15% NaCl, indicating that extreme halophilic microorganisms may not resist the concentration range in which PMA fully acts. We conclude that NaCl, but not pH, directly affects the efficiency of PMA treatment, limiting its use for cell viability assessment of halophiles and in hypersaline samples.  相似文献   

9.
Urmia Lake is one of the most permanent hypersaline lakes in the world which is threatened by hypersalinity and serious dryness. In spite of its importance no paper has been published regarding bacterial community of this lake. Accordingly, the present study aimed to investigate the halophilic bacteria in the aforementioned lake. In so doing, thirty seven strains were isolated on six different culture media. The isolated strains were characterized using phenotypic and genotypic methods. Growth of the strains occurred at 2535 degrees C, pH 6-9 and 7 to 20% (w/v) NaCl indicating that most of the isolates were moderately halophiles. Catalase, oxidase and urease activities were found to be positive for the majority of the isolates. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolated bacteria belonged to two major taxa: Gammaproteobacteria (92%, including Salicola [46%], Pseudomonas [13.5%], Marinobacter [ 11%], Idiomarina [11%], and Halomonas [8%]) and Firmicutes (8%, including Bacillus [5%] and Halobacillus [3%]). In addition, a novel bacterium whose 16S rRNA gene sequence showed almost 98% sequence identity with the taxonomically troubled DSM 3050T, Halovibrio denitrificans HGD 3T and Halospina denitrificans HGD 1-3T, each, was isolated. 16S rRNA gene similarity levels along with phenotypic characteristics suggest that some of the isolated strains could be regarded as potential type strain for novel species, on which further studies are recommended.  相似文献   

10.
青海湖嗜盐微生物系统发育与种群多样性   总被引:4,自引:0,他引:4  
青海湖是我国境内最大的内陆咸水湖泊,水体中嗜盐微生物的生存现状尚不明确。本研究利用OSM培养基(Oesterhelt-Stoeckenius medium),从湖域生境水样中富集和分离获得嗜盐微生物35株,以中度嗜盐菌为主,约占62.9%(22株);轻度嗜盐菌次之,约占22.9%(8株);耐盐菌与非嗜盐菌分别占11.4%(4株)和2.9%(1株)。根据16SrDNA序列的系统发育分析表明,γ-变形菌纲(γ-Proteobacteria)菌株最多,约占68.6%(24株);芽孢杆菌纲次之,约占17.1%(6株);放线菌纲、α-变形菌纲(α-Proteobacteria,1株)和散囊菌亚纲(Eurotiomycetidae,1株)的类群相对较少。这些嗜盐菌属于14个属,其中以海洋螺菌目盐单胞菌属(Halomonas)为优势种群,共计10株;其次为海单胞菌属(Marinomonas),共4株。中度嗜盐菌盐单胞菌属应为青海湖嗜盐菌的优势种群,可能因为相对偏低的盐度环境,为其长期进化和适应性生存提供了必要条件。  相似文献   

11.
Eighteen strains of extremely halophilic bacteria and three strains of moderately halophilic bacteria were isolated from four different solar salt environments. Growth tests on carbohydrates, low-molecular-weight carboxylic acids, and complex medium demonstrated that the moderate halophiles and strains of the extreme halophiles Haloarcula and Halococcus grew on most of the substrates tested. Among the Halobacterium isolates were several metabolic groups: strains that grew on a broad range of substrates and strains that were essentially confined to either amino acid (peptone) or carbohydrate oxidation. One strain (WS-4) only grew well on pyruvate and acetate. Most strains of extreme halophiles grew by anaerobic fermentation and possibly by nitrate reduction. Tests of growth potential in natural saltern brines demonstrated that none of the halobacteria grew well in brines which harbor the densest populations of these bacteria in solar salterns. All grew best in brines which were unsaturated with NaCl. The high concentrations of Na+ and Mg2+ found in saltern crystallizer brines limited bacterial growth, but the concentrations of K+ found in these brines had little effect. MgSO4 was relatively more inhibitory to the extreme halophiles than was MgCl2, but the reverse was true for the moderate halophiles.  相似文献   

12.
The diversity of sulfate-reducing bacteria (SRB) inhabiting the extreme hypersaline sediment (270 g L(-1) NaCl) of the northern arm of Great Salt Lake was studied by integrating cultivation and genotypic identification approaches involving PCR-based retrieval of 16S rRNA and dsrAB genes, the latter encoding major subunits of dissimilatory (bi) sulfite reductase. The majority (85%) of dsrAB sequences retrieved directly from the sediment formed a lineage of high (micro) diversity affiliated with the genus Desulfohalobium, while others represented novel lineages within the families Desulfohalobiaceae and Desulfobacteraceae or among Gram-positive SRB. Using the same sediment, SRB enrichment cultures were established in parallel at 100 and at 190 g L(-1) NaCl using different electron donors. After 5-6 transfers, dsrAB and 16S rRNA gene-based profiling of these enrichment cultures recovered a SRB community composition congruent with the cultivation-independent profiling of the sediment. Pure culture representatives of the predominant Desulfohalobium-related lineage and of one of the Desulfobacteraceae-affilated lineages were successfully obtained. The growth performance of these isolates and of the enrichment cultures suggests that the sediment SRB community of the northern arm of Great Salt Lake consists of moderate halophiles, which are salt-stressed at the in situ salinity of 27%.  相似文献   

13.
Urmia Lake, located in northwest Iran, is an oligotrophic and extremely hypersaline habitat that supports diverse forms of life. Owing to its unique biodiversity and special environmental conditions, Urmia Lake National Park has been designated as one of the biosphere reserves by UNESCO. This study was aimed to characterize basidiomycetous yeasts in hypersaline soils surrounding the Urmia Lake National Park using a polyphasic combination of molecular and physiological data. Soil samples were collected from eight sites in Lake Basin and six islands insides the lake. Yeast strains were identified by sequencing the D1/D2 domains of the 26S rRNA gene. When D1/D2 domain sequencing did not resolve the identity of the species, strain identification was obtained by ITS 1 & 2 sequencing. Twenty-one species belonging to the genera Cystobasidium, Holtermanniella, Naganishia, Rhodotorula, Saitozyma, Solicoccozyma, Tausonia, Vanrija, and Vishniacozyma were identified. Solicoccozyma aeria represented the dominant species. The ability of isolates to grow at 10 and 15 % of NaCl was checked; about two-thirds of the strains grew at 10 %, while about 13 % of the isolates grew in medium with 15 % NaCl. this study is the first study on the culturable yeast diversity in hypersaline soils surrounding an Asian lake.  相似文献   

14.
Halovirus is a major force that affects the evolution of extreme halophiles and the biogeochemistry of hypersaline environments. However, until now, the systematic studies on the halovirus ecology and the effects of salt concentration on virus-host systems are lacking. To provide more valuable information for understanding ecological strategies of a virus-host system in the hypersaline ecosystem, we studied the interaction between halovirus SNJ1 and its host Natrinema sp.J7-2 under various NaCl concentrations. We found that the adsorption rate and lytic rate increased with salt concentration, demonstrating that a higher salt concentration promoted viral adsorption and proliferation. Contrary to the lytic rate, the lysogenic rate decreased as the salt concentration increased. Our results also demonstrated that cells incubated at a high salt concentration prior to infection increased the ability of the virus to adsorb and lyse its host cells; therefore, the physiological status of host cells also affected the virus-host interaction. In conclusion, SNJ1 acted as a predator, lysing host cells and releasing progeny viruses in hypersaline environments; in low salt environments, viruses lysogenized host cells to escape the damage from low salinity.  相似文献   

15.
Four strains of lithotrophic sulfate-reducing bacteria (SRB) have been enriched and isolated from anoxic sediments of hypersaline chloride–sulfate lakes in the Kulunda Steppe (Altai, Russia) at 2 M NaCl and pH 7.5. According to the 16S rRNA gene sequence analysis, the isolates were closely related to each other and belonged to the genus Desulfonatronovibrio, which, so far, included only obligately alkaliphilic members found exclusively in soda lakes. The isolates utilized formate, H2 and pyruvate as electron donors and sulfate, sulfite and thiosulfate as electron acceptors. In contrast to the described species of the genus Desulfonatronovibrio, the salt lake isolates could only tolerate high pH (up to pH 9.4), while they grow optimally at a neutral pH. They belonged to the moderate halophiles growing between 0.2 and 2 M NaCl with an optimum at 0.5 M. On the basis of their distinct phenotype and phylogeny, the described halophilic SRB are proposed to form a novel species within the genus Desulfonatronovibrio, D. halophilus (type strain HTR1T = DSM24312T = UNIQEM U802T).  相似文献   

16.
Lately, there has been a special interest in understanding the role of halophilic and halotolerant organisms for their ability to degrade hydrocarbons. The focus of this study was to investigate the genes and enzymes involved in the initial steps of the benzene degradation pathway in halophiles. The extremely halophilic bacteria Arhodomonas sp. strain Seminole and Arhodomonas sp. strain Rozel, which degrade benzene and toluene as the sole carbon source at high salinity (0.5 to 4 M NaCl), were isolated from enrichments developed from contaminated hypersaline environments. To obtain insights into the physiology of this novel group of organisms, a draft genome sequence of the Seminole strain was obtained. A cluster of 13 genes predicted to be functional in the hydrocarbon degradation pathway was identified from the sequence. Two-dimensional (2D) gel electrophoresis and liquid chromatography-mass spectrometry were used to corroborate the role of the predicted open reading frames (ORFs). ORFs 1080 and 1082 were identified as components of a multicomponent phenol hydroxylase complex, and ORF 1086 was identified as catechol 2,3-dioxygenase (2,3-CAT). Based on this analysis, it was hypothesized that benzene is converted to phenol and then to catechol by phenol hydroxylase components. The resulting catechol undergoes ring cleavage via the meta pathway by 2,3-CAT to form 2-hydroxymuconic semialdehyde, which enters the tricarboxylic acid cycle. To substantiate these findings, the Rozel strain was grown on deuterated benzene, and gas chromatography-mass spectrometry detected deuterated phenol as the initial intermediate of benzene degradation. These studies establish the initial steps of the benzene degradation pathway in halophiles.  相似文献   

17.
Biodegradation of hydrocarbons by an extremely halophilic archaebacterium   总被引:12,自引:0,他引:12  
An archaebacterium (strain EH4) able to biodegrade saturated and aromatic hydrocarbons has been isolated from a sail-marsh. Maximum growth on eicosane (62% of biodegradation, 10 h generation time) was reached in a medium prepared with a natural hypersaline water collected from a salt-marsh (3.5 mol/1 NaCl concentration). No growth on hydrocarbons was observed for NaCl concentration lower than 1.8 mol/1.  相似文献   

18.
Two extreme halophilic Haloferax strains and one strain each of Halobacterium and Halococcus were isolated from a hypersaline coastal area of the Arabian Gulf on a mineral salt medium with crude oil vapor as a sole source of carbon and energy. These archaea needed at least 1 M NaCl for growth in culture, and grew best in the presence of 4 M NaCl or more. Optimum growth temperatures lied between 40 and 45oC. The four archaea were resistant to the antibiotics chloramphenicol, cycloheximide, nalidixic acid, penicillin, streptomycin and tetracycline. The strains could grow on a wide scope of aliphatic and aromatic (both mono-and polynuclear) hydrocarbons, as sole sources of carbon and energy. Quantitative measurements revealed that these extreme halophilic prokaryotes could biodegrade crude oil (13–47%, depending on the strain and medium salinity), n-octadecane (28–67%) and phenanthrene (13–30%) in culture after 3 weeks of incubation. The rates of biodegradation by all strains were enhanced with increasing NaCl concentration in the medium. Optimal concentration was 3 M NaCl, but even with 4 M NaCl the hydrocarbon-biodegradation rates were higher than with 1 and 2 M NaCl. It was concluded that these archaea could contribute to self-cleaning and bioremediation of oil-polluted hypersaline environments.  相似文献   

19.
The purpose of the present work was to study the potential biotechnological use of Dunaliella species isolated from a hypersaline lake in Turkey. Dunaliella spp. grown in Johnson's medium were isolated and their glycerol production was studied in a batch system in order to determine the optimal conditions required for the highest glycerol accumulation. In the experiments performed with four newly isolated Dunaliella spp., the maximum glycerol accumulation was obtained at 20% NaCl concentration, and pH 6 (for strains T1 and T2) and pH 9 (for strains T3 and T4). Biomass production by strain T2 was significantly higher that by the other strains but the highest glycerol production in broth was obtained by strain T1 followed by strain T2. Strain T1 showed high glycerol production, i.e. 452.57microg/ml of culture broth at 20% NaCl concentration. The highest glycerol accumulation on both dry weight and cell basis was obtained with strain T1, followed by strains T3 and T4 (55.01, 50.16, and 40.23microg/10(6) cells (or pg/cell), respectively) at 25% NaCl concentration. When the high initial inoculum concentration was used at 25% NaCl concentration, strain T1 had the shortest (approximately 10-15days) lag period. This study shows that the isolated strains T1 and T2 can be used for glycerol production because of their high productivity.  相似文献   

20.
Proteins from halophiles have adapted to challenging environmental conditions and require salt for their structure and function. How halophilic proteins adapted to a hypersaline environment is still an intriguing question. It is important to mimic the physiological conditions of the archae extreme halophiles when characterizing their enzymes, including structural characterization. The NMR derived structure of Haloferax volcanii dihydrofolate reductase in 3.5 M NaCl is presented, and represents the first high salt structure calculated using NMR data. Structure calculations show that this protein has a solution structure which is similar to the previously determined crystal structure with a difference at the N terminus of beta3 and the type of beta-turn connection beta7 and beta8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号