首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The subcellular distribution of the 1,4-dihydropyridine receptor was determined in rabbit skeletal muscle in situ by immunofluorescence and immunoelectron microscopy. Longitudinal and transverse cryosections (5-8 microns) of rabbit gracilis muscle were labeled with monoclonal antibodies specific against either the alpha 1-subunit (170,000-D polypeptide) or the beta-subunit (52,000-D polypeptide) of the 1,4-dihydropyridine receptor by immunofluorescence labeling. In longitudinal sections, specific labeling was present only near the interface between the A- and I-band regions of the sarcomeres. In transverse sections, specific labeling showed a hexagonal staining pattern within each myofiber however, the relative staining intensity of the type II (fast) fibers was judged to be three- to fourfold higher than that of the type I (slow) fibers. Specific immunofluorescence labeling of the sarcolemma was not observed in either longitudinal or transverse sections. These results are consistent with the idea that the alpha 1-subunit and the beta-subunit of the purified 1,4-dihydropyridine receptor are densely distributed in the transverse tubular membrane. Immunoelectron microscopical localization with a monoclonal antibody to the alpha 1-subunit of the 1,4-dihydropyridine receptor showed that the 1,4-dihydropyridine receptor is densely distributed in the transverse tubular membrane. Approximately half of these were distributed in close proximity to the junctional region between the transverse tubules and the terminal cisternae. Specific labeling was also present in discrete foci in the subsarcolemmal region of the myofibers. The size and the nonrandom distribution of these foci in the subsarcolemmal region support the possibility that they correspond to invaginations from the sarcolemma called caveolae. In conclusion, our results demonstrate that the 1,4-dihydropyridine receptor in skeletal muscle is localized to the transverse tubular membrane and discrete foci in the subsarcolemmal region, possibly caveolae but absent from the lateral portion of the sarcolemma.  相似文献   

2.
The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle contains four polypeptide components of 175,000 Da (nonreduced)/150,000 Da (reduced), 170,000, 52,000, and 32,000 Da (Leung, A. T., Imagawa, T., and Campbell, K. P. (1987) J. Biol. Chem. 262, 7943-7946). A monoclonal antibody specific to the 52,000-Da polypeptide component of the dihydropyridine receptor has been produced and used in immunoprecipitation and immunoblotting experiments to demonstrate that the 52,000-Da polypeptide is an integral subunit of the purified dihydropyridine receptor. Peptide mapping experiments with 32P-labeled dihydropyridine receptor have also demonstrated that the 52,000-Da polypeptide is distinct from and not a proteolytic fragment of the 170,000-Da subunit. Densitometric scanning of Coomassie Blue-stained sodium dodecyl sulfate-polyacrylamide gels of the purified dihydropyridine receptor has demonstrated that the 52,000-Da polypeptide exists in a 1:1 stoichiometric ratio with the 170,000-, 175,000/150,000-, and 32,000-Da subunits of the dihydropyridine receptor. Electron microscopy of the freeze-dried, rotary-shadowed dihydropyridine receptor has shown that the preparation contains a homogeneous population of 16 x 22-nm ovoidal particles large enough to contain all four polypeptides of the dihydropyridine receptor. The particles have two distinct components of similar size which may represent the location in the molecule of the two larger subunits.  相似文献   

3.
The Ca2+ channel antagonists receptor from rabbit skeletal muscle was purified to homogeneity. Following reconstitution into phosphatidylcholine vesicles, binding experiments with (+)[3H]PN 200-110, (-)[3H]D888 and d-cis-[3H]diltiazem demonstrated that receptor sites for the three most common Ca2+ channel markers copurified with binding stoichiometries close to 1:1:1. Sodium dodecyl sulfate gel analysis of the purified receptor showed that it is composed of only one protein of Mr 170,000 under non-reducing conditions and of two polypeptides of Mr 140,000 and 32,000 under disulfide-reducing conditions. Iodination of the protein of Mr 170,000 and immunoblots experiments with antisera directed against the different components demonstrated that the Ca2+ channel antagonists receptor is a complex of Mr 170,000 composed of a polypeptide chain of Mr 140,000 associated to one polypeptide chain of Mr 32,000 by disulfide bridges. One of the problems concerning this subunit structure of the putative Ca2+ channel was the presence of smaller polypeptide chains of Mr 29,000 and 25,000. Peptide mapping of these polypeptide chains and analysis of their cross-reactivity with sera directed against the proteins of Mr 170,000 and 32,000 demonstrated that they were degradative products of the Mr 32,000 component. Both the large (140 kDa) and the small (32 kDa) component of the putative Ca2+ channel are heavily glycosylated. At least 20-22% of their mass were removed by enzymatic deglycosylation. Finally the possibility that both the 140-kDa and 32-kDa components originate from a single polypeptide chain of Mr 170,000 which is cleaved by proteolysis upon purification is discussed.  相似文献   

4.
The cross-regulatory communication from beta-adrenergic receptors to 1,4-dihydropyridine (DHP) Ca2+ channel agonist and antagonist binding sites and cooperativity between DHP binding sites were studied in microsomal membranes of canine coronary artery (purified to a factor 2.9 for DHPs). The maximal number of binding sites (Bmax) identified in coronary artery microsomal membranes (CAM) with Ca2+ channel agonist (-)-S-(3H)BAY K 8644 was two times higher than Bmax of sites labelled with Ca2+ channel antagonist (+)-(3H)PN 200-110. The exposure of CAM to isoprenaline was accompanied with down-regulation of beta-adrenergic receptors and with increase in binding capacity for DHPs. The increase in Bmax was proportional in both groups of experiments and was related to increased affinity of DHPs. The 1,4-DHP binding sites identified in vascular smooth muscle showed characteristics typical for classification of specific 1,4-DHP receptor on Ca2+ channels. The binding was of high affinity, saturable and reversible, it showed stereoselectivity and it was positively modulated by beta-adrenergic stimulation and its showed cAMP and GTP sensitivity. The results support the hypothesis that beta-receptors also regulate the mode of Ca2+ channels in coronary artery smooth muscle.  相似文献   

5.
Isolated triads from rabbit skeletal muscle were shown to contain an intrinsic protein kinase which was neither Ca2+/calmodulin-dependent nor cAMP-dependent. The protein substrates phosphorylated by this protein kinase exhibited apparent molecular weights of 300,000, 170,000, 90,000, 80,000, 65,000, 56,000, 52,000, 51,000, 40,000, 25,000, 22,000, and 15,000. Purification of the 1,4-dihydropyridine receptor from phosphorylated triads has demonstrated that the 170,000- and 52,000-Da subunits of the 1,4-dihydropyridine receptor are phosphorylated by this intrinsic protein kinase in isolated triads. Monoclonal antibodies to the 170,000-Da subunit of the dihydropyridine receptor immunoprecipitated the 170,000-Da phosphoprotein from detergent extracts of phosphorylated triads. The mobility of the 170,000-Da phosphoprotein in sodium dodecyl sulfate-polyacrylamide gels was not changed with or without reduction, demonstrating that the 170,000-Da phosphoprotein is not the glycoprotein subunit of the receptor. Our results demonstrate that the 170,000- and 52,000-Da subunits of the dihydropyridine receptor are phosphorylated by an intrinsic protein kinase in isolated triads. In addition, our results also demonstrate that the 175,000-Da glycoprotein subunit of the dihydropyridine receptor is not phosphorylated in isolated triads by the intrinsic protein kinase, cAMP-dependent protein kinase, or endogenous Ca2+/calmodulin-dependent protein kinase.  相似文献   

6.
The dihydropyridine receptor associated with the voltage-dependent Ca2+ channel from rabbit skeletal muscle has been purified using the tritiated derivative of (+)-PN 200-110. The drug was used not only as a marker associated with the solubilized receptor but also in direct binding experiments performed after each purification step. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate solubilization of a microsomal preparation resulted in an extract with a specific binding activity of 10 pmol/mg of protein. A combination of chromatographic steps utilizing anion exchange, lectin affinity, and gel filtration resulted in an 80-fold purification to a specific binding activity of 800 pmol/mg of protein. The affinity of (+)-[3H]PN 200-110 for the solubilized receptor was only slightly altered after the purification procedure. The KD values were 0.7 and 1.8 nM on the starting material and the most purified fractions, respectively. The subunit composition of the dihydropyridine receptor was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was consistent with three polypeptides of Mr 142,000, 33,000, and 32,000. The last two small components were not covalently associated with the larger one. In spite of a careful investigation of the conditions which improved the stability of the dihydropyridine receptor, a partial denaturation could not be prevented during purification. This resulted in an underestimation of receptor purity when calculated from the maximal specific binding activity as compared to the enrichment in the three polypeptides observed after polyacrylamide gel electrophoresis. Finally, application of the same purification procedure to solubilized microsomal preparations of chick and frog skeletal muscle demonstrated the presence of a large polypeptide component of Mr 135,000-141,000 associated with the Ca2+ channel from these sources. The doublet of small molecular weight was not found with the frog muscle.  相似文献   

7.
A microsomal fraction of rabbit skeletal muscle was sed for the isolation of a dihydropyridine (DHP) receptor, a putative potential-dependent calcium channel. The receptor purification was followed by the binding of 3H-labeled riodipine derivative which possesses a high affinity for digitonin-solubilized DHP receptor. The DHP-Sepharose affinity chromatography of an enriched receptor fraction allowed to isolate a receptor, 60-70% homogeneous on the basis of DHP-binding activity. SDS gel electrophoresis showed that the purified receptor is composed of two subunits with molecular masses of 160 and 53 kD. The large subunit changes its electrophoretic mobility after the reduction of disulfide bonds.  相似文献   

8.
The voltage-dependent calcium channel from guinea-pig skeletal muscle T-tubules has been isolated with a rapid, two-step purification procedure. Reversible postlabelling of the channel-linked 1,4-dihydropyridine receptor and stereoselective photolabelling as a novel approach were employed to assess purity. A 135-fold purification to a specific activity of 1311 +/- 194 pmol/mg protein (determined by reversible equilibrium binding with (+)-[3H]PN200-110) was achieved. Three polypeptides of 155 kDa, 65 kDa and 32 kDa were identified in the purified preparation. The 155-kDa band is a glycoprotein. The arylazide photoaffinity probe (-)-[3H]azidopine bound with high affinity to solubilized membranes (Kd = 0.7 +/- 0.2 nM) and highly purified fractions (Kd = 3.1 +/- 2 nM), whereas the optical antipode (+)-azidopine was of much lower affinity. Irradiation of (-)-[3H]azidopine and (+)-[3H]azidopine receptor complexes with ultraviolet light led to preferential incorporation of the (-) enantiomer into the 155-kDa polypeptide in crude solubilized and purified preparations. The pharmacological profile of irreversible labelling of the 155-kDa glycoprotein by (-)-[3H]azidopine is identical to that found in reversible binding experiments. Specific photolabelling of the 155-kDa band by (-)-[3H]azidopine per milligram of protein increases 150-fold upon purification, whereas incorporation into non-specific bands in the crude solubilized material is identical for both, (-) and (+)-[3H]azidopine.  相似文献   

9.
The effects of the three dihydropyridine calcium channel agonists (+/-)BAY K 8644, (+)202-791 and (+/-)CGP 28392 on 45Ca++ uptake were studied in cultures of rabbit aortic smooth muscle cells. At 10(-7) M each agonist enhanced 45Ca++ uptake in 15-50 mM K+ but had no effect on the basal 45Ca++ uptake at 5 mM K+. At the uptake threshold of 15 mM K+ each agonist potentiated 45Ca++ uptake in a dose-dependent manner with half maximal effects at 2.4 nM for (+/-)BAY K 8644, 22 nM for (+)202-791 and 18 nM for (+/-)CGP 28392. The agonists showed no significant antagonistic activity. Responses were antagonized competitively by nifedipine and non-competitively by (+/-)D-600. The 45Ca++ uptake dose-response curves and the half maximal effects of the three agonists were over the same range of concentrations as their inhibition of [3H]nitrendipine binding to rat ventricular receptor membrane preparations. The data suggest that these cells mimic the calcium uptake by the intact aorta better than commercial vascular smooth muscle lines or cardiac cells.  相似文献   

10.
The receptor sites for 1,4-dihydropyridine (DHP) calcium channel ligands were identified and pharmacologically characterized in partially purified canine coronary artery smooth muscle (CSM) membranes (purification factor for 1,4-DHPs 2.8 and 2.2 respectively) using Ca2+ channel agonist (-)-S-[3H]BAYK 8644 and antagonist (+)-[3H]PN 200-110 as radioligands. The beta-adrenergic receptors were identified with (-)-3-[125I]iodocyanopindolol (ICYP). Specific binding of 1,4-DHPs and ICYP to membrane fraction was saturable, reversible and of both high and low affinity. The Kd for 1,4-DHP Ca2+ channel agonist was 0.59 +/- 0.05 and for antagonist 0.35 +/- 0.06 nmol/l and for low affinity binding sites Kd = 9.0 +/- 0.18 and 18.0 +/- 1.1 nmol/l. The high affinity 1,4-DHP binding (Bmax = 265 +/- 21 and 492 +/- 12 fmol/mg protein), showed stereoselectivity, temperature-dependence as well as pharmacological specificity: isoprenaline- and GTP-sensitivity, positive modulation with dilthiazem and negative modulation with verapamil, that is, properties characteristic of 1,4-DHP receptor sites on L-type Ca2+ channels. The low affinity binding sites were characterized as nonselective, temperature independent, dipyridamol-sensitive and represented a nucleoside transporter. The proportion of high affinity binding sites identified in the CSM membranes was 1.85 : 1.0 in favour of the antagonist. Results obtained with [125I]omega Conotoxin GVI A demonstrated that CSM membrane fractions isolated from median layers of coronary artery were devoid of substantial contamination with fragments of neuronal cells.  相似文献   

11.
D R Ferry  K Kmpf  A Goll    H Glossmann 《The EMBO journal》1985,4(8):1933-1940
The arylazide 1,4-dihydropyridine, [3H]azidopine, binds with high affinity to calcium channels in partially purified guinea-pig skeletal muscle transverse tubule membranes. Upon brief exposure to u.v. light, [3H]azidopine incorporates covalently into transverse tubule membrane proteins, as judged by SDS-PAGE. After alkylation of sulfhydryl groups with N-ethylmaleimide three specifically labelled bands of mol wts. 240 kd, 158 kd and 99 kd are always observed with fluorography after one-dimensional SDS-PAGE. Two other specific bands with mol. wts. of 52 kd and 55 kd, respectively, were sometimes observed. Two-dimensional SDS-PAGE (non-reduced but alkylated in the first dimension and reduced in the second dimension) revealed that the 240-kd band after reduction migrates with a mol. wt. of 99 kd. The 158-kd and 99-kd bands do not change in mobility. It is suggested that [3H]azidopine binds in such a way that the arylazide moiety of the ligand comes into contact with at least three calcium channel components: the A component of mol. wt. 240 kd, the B component of mol. wt. 158 kd and a C component of mol. wt. 99 kd. B and C are non-covalently bonded subunits of the channel, whereas A could be a heterodimer consisting of B and C, linked by disulfide bonds. Subunits of smaller mol. wt. may be also part of the ionic pore. Photolabelling of transverse tubule membranes after high energy irradiation with 10 MeV electrons supports this interpretation.  相似文献   

12.
13.
The ability of a number of calcium antagonistic drugs including nitrendipine, D600, and D890 to block contractures in single skinned (sarcolemma removed) muscle fibers of the frog Rana pipiens has been characterized. Contractures were initiated by ionic substitution, which is thought to depolarize resealed transverse tubules in this preparation. Depolarization of the transverse tubules is the physiological trigger for the release of calcium ion from the sarcoplasmic reticulum and thus of contractile protein activation. Since the transverse tubular membrane potential cannot be measured in this preparation, tension development is used as a measure of activation. Once stimulated, fibers become inactivated and do not respond to a second stimulus unless allowed to recover or reprime (Fill and Best, 1988). Fibers exposed to calcium antagonists while fully inactivated do not recover from inactivation (became blocked or paralyzed). The extent of drug-induced block was quantified by comparing the height of individual contractures. Reprimed fibers were significantly less sensitive to block by both nitrendipine (10 degrees C) and D600 (10 and 22 degrees C) than were inactivated fibers. Addition of D600 to fibers recovering from inactivation stopped further recovery, confirming preferential interaction of the drug with the inactivated state. A concerted model that assumed coupled transitions of independent drug-binding sites from the reprimed to the inactivated state adequately described the data obtained from reprimed fibers. Photoreversal of drug action left fibers inactivated even though the drug was initially added to fibers in the reprimed state. This result is consistent with the prediction from the model. The estimated KI for D600 (at 10 degrees and 22 degrees C) and for D890 (at 10 degrees C) was approximately 10 microM. The estimated KI for nitrendipine paralysis of inactivated fibers at 10 degrees C was 16 nM. The sensitivity of reprimed fibers to paralysis by D600 and D890 was similar. However, inactivated fibers were significantly less sensitive to the membrane-impermeant derivative (D890) than to the permeant species (D600), which suggests a change in the drug-binding site or its environment during the inactivation process. The enantomeric dihydropyridines (+) and (-) 202-791, reported to be calcium channel agonists and antagonists, respectively, both caused paralysis, which suggests that blockade of a transverse tubular membrane calcium flux is not the mechanism responsible for antagonist-induced paralysis. The data support a model of excitation-contraction coupling involving transverse tubular proteins that bind calcium antagonists.  相似文献   

14.
Digitonin and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propane sulfonate (Chapso) were used to solubilize the receptor of dihydropyridine calcium antagonists from the transverse tubule membranes of rabbit skeletal muscle. The receptor retained the ability for selective adsorption from either detergent extract by dihydropyridine-Sepharose. Incubation of the affinity resin with nitrendipine resulted in the elution of the receptor protein composed of two main polypeptides with molecular masses of 160 kDa and 53 kDa, as shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Only these two subunits were found in the receptor preparation purified to a specific dihydropyridine-binding activity of 2500-2800 pmol/mg protein (60-70% purity) from digitonin-solubilized membranes by a combination of wheat-germ-agglutinin--Sepharose, anion-exchange and dihydropyridine-Sepharose chromatography steps. The individual subunits were isolated in dodecyl-sulfate-denatured form from the preparation of the receptor, enriched by a two-step large-scale procedure applied to Chapso-solubilized membranes. The 160-kDa subunit slowly changed its apparent molecular mass to 125 kDa upon disulfide bond reduction without formation of novel peptides. This finding implies that 160-kDa subunit is cross-linked by intramolecular S-S bridge(s). Chemical deglycosylation with trifluoromethanesulfonic acid showed that the carbohydrate content of large and small subunits accounted for 7.5% and 6.6% by mass, respectively. The dihydropyridine receptor subunits are glycosylated through N-glycoside bonds only. In their ratio of polar to hydrophobic amino acid residues in the amino acid composition of the receptor subunits, these polypeptides behave rather as peripheral proteins. It is suggested that the main portion of polypeptide chains is located outside the membrane in contact with solvent.  相似文献   

15.
A monoclonal antibody designated as MAC-L1 immunoprecipitated [3H]PN200-110-labeled calcium channels of chick cardiac and skeletal muscle. On specific immunoprecipitation of 125I-labeled proteins, two large polypeptides (Mr 197,000 and 139,000 for heart, and 172,000 and 135,000 for skeletal muscle, under reducing conditions) were identified as the major components of these channels. Both polypeptides were found to exist together as a complex in 1% digitonin, but to become separated from each other in 1% Triton X-100. The 197 and 172 kDa peptides of cardiac and skeletal muscles, respectively, were photolabeled with [3H]azidopine. Under nonreducing conditions, the 139 kDa polypeptide of heart and the 135 kDa polypeptide of skeletal muscle took on larger molecular weights of 192,000 and 190,000, respectively. The 139 kDa but not the 197 kDa component of the heart was capable of binding to wheat germ agglutinin-Sepharose. Among the polypeptides specifically precipitated by MAC-L1, a 165 kDa peptide of skeletal muscle was phosphorylated by cAMP-dependent protein kinase. In contrast, a minor 99 kDa polypeptide, but not the major 197 kDa polypeptide, of the heart was phosphorylated by this kinase. These results suggest that the dihydropyridine-sensitive cardiac calcium channel has alpha 1 and alpha 2 subunits that are homologous but not identical to those of the skeletal muscle calcium channel.  相似文献   

16.
Triads isolated from frog and rabbit skeletal muscle were equilibrated with different external [Ca2+], ranging from 0.025 to 10 mM. Vesicular calcium increased with external [Ca2+] as the sum of a linear plus a saturable component; the latter, which vanished after calsequestrin removal, displayed Bmax values of 182 and 132 nmol of calcium/mg of protein, with Kd values of 1.21 and 1.14 mM in frog and rabbit vesicles, respectively. The effect of luminal [Ca2+] on release kinetics in triads from frog and rabbit skeletal muscle was investigated, triggering release with 2 mM ATP, pCa 5, pH 6.8. In triads from frog, release rate constant (k) values increased sixfold after increasing luminal [Ca2+] from 0.025 to 3 mM. In triads from rabbit, k values increased 20-fold when luminal [Ca2+] increased from 0.05 to 0.7 mM. In both preparations, k values remained relatively constant (10-12 s-1) at higher luminal [Ca2+], with a small decrease at 10 mM. Initial release rates increased with luminal [Ca2+] in both preparations; in triads from rabbit the increase was hyperbolic, and in triads from frogs the increase was sigmoidal. These results indicate that, although triads from frog and rabbit respond differently, in both preparations luminal [Ca2+] has a distinctive effect on release, presumably by regulating sarcoplasmic reticulum calcium channels.  相似文献   

17.
18.
The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.  相似文献   

19.
1. To compare glucose 1,6-bisphosphate synthesis in different types of cells, we partially purified (2000-fold) a glycerate 1,3 P2-dependent glucose 1,6-bisphosphate synthase from rabbit skeletal muscle. 2. In agreement with the results reported by others for mouse brain and pig skeletal muscle, the enzyme can be separated from bulk phosphoglucomutase (PGM) activity by DEAE-cellulose chromatography of crude cellular extract. This cannot be achieved on human hemolysates where glycerate 1,3-P2-dependent glucose 1,2-bisphosphate synthesis is displayed only by multifunctional PGM2 isoenzymes. 3. The Km values for glycerate 1,3-P2 (0.50 microM), glucose 1-phosphate (90 microM), Mg2+ (0.22 mM), and also pH optimum (7.8) and mol. wt (70,000) of the rabbit skeletal muscle enzyme are similar to those of the enzymes from mouse brain and human red blood cells, but they differ from those reported for the pig skeletal muscle enzyme.  相似文献   

20.
This study was part of a broad search for endogenous regulators of L-type calcium channels. The screening for active fractions was done by measuring inhibition [3H]1,4-dihydropyridine (DHP) binding to rat cardiac and cortex membranes. An inhibitory fraction, termed lyophilized brain hexane-extractable inhibitor (LBHI), was isolated from hexane extracts of lyophilized calf brain. The active substance was purified by a series of chromatographic steps. 13C nuclear magnetic resonance (NMR), 1H coherence spectroscopy (COSY) NMR and fast atom bombardment (FAB) mass spectroscopy suggested that LBHI was N-arachidonic acid-2-hydroxyethylamide. Synthesis of this substance and subsequent high performance liquid chromatography (HPLC) and NMR analysis confirmed this structure. Synthetic LBHI (SLBHI) inhibited [3H]DHP binding to rat cortex membranes with an IC50 value of 15 μM and a Hill coefficient of 2. Saturation analysis in the presence of SLBHI showed a change in KD (equilibrium dissociation constant), but not maximal binding capacity (Bmax). SLBHI produced an increased dissociation rate, which, along with the Hill slope of > 1, suggested a non-competitive interacton with the DHP binding site. The results suggest that arachidonic acid derivatives may be endogenous modifiers of the DHP calcium antagonist binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号