首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
N Cooper  JM Kamilar  CL Nunn 《PloS one》2012,7(8):e42190
Hosts and parasites co-evolve, with each lineage exerting selective pressures on the other. Thus, parasites may influence host life-history characteristics, such as longevity, and simultaneously host life-history may influence parasite diversity. If parasite burden causes increased mortality, we expect a negative association between host longevity and parasite species richness. Alternatively, if long-lived species represent a more stable environment for parasite establishment, host longevity and parasite species richness may show a positive association. We tested these two opposing predictions in carnivores, primates and terrestrial ungulates using phylogenetic comparative methods and controlling for the potentially confounding effects of sampling effort and body mass. We also tested whether increased host longevity is associated with increased immunity, using white blood cell counts as a proxy for immune investment. Our analyses revealed weak relationships between parasite species richness and longevity. We found a significant negative relationship between longevity and parasite species richness for ungulates, but no significant associations in carnivores or primates. We also found no evidence for a relationship between immune investment and host longevity in any of our three groups. Our results suggest that greater parasite burden is linked to higher host mortality in ungulates. Thus, shorter-lived ungulates may be more vulnerable to disease outbreaks, which has implications for ungulate conservation, and may be applicable to other short-lived mammals.  相似文献   

2.
We investigate the determinants of macroparasite species richness of Iberian carnivores. For this, we used the parasitological data collected on 14 species of carnivores over a 10-year period. These previously unpublished data permitted to estimate parasite species richness using estimators of species richness, i.e. Jackknife first order and Chao 2. Most of the parasite species were rare, with low prevalence. Potential determinants were investigated as possible factors explaining the variability of parasites species richness among carnivores host body mass, host geographical range, host longevity and host density. Using independent contrasts, we found positive relationships between residuals of estimates of parasite species richness and residuals in host density, and between residuals of estimates of parasite species richness and residuals in host range. These results are discussed in terms of risk of extinction and invasion abilities related to a possible investment in immune defences correlated with parasite diversity.  相似文献   

3.
Host social, ecological and life history traits are predicted to influence both parasite establishment within host species and the distribution of parasites among host species. Yet only a few studies have investigated the role multiple host traits play in determining patterns of infection across diverse parasite groups. To explore the association between host traits and parasite species richness (PSR), we assembled a comprehensive database encompassing 601 parasites (including viruses, bacteria, protozoa, helminths and arthropods) reported to infect 96 species from two well-studied and diverse host clades: even- and odd-toed hoofed mammals (Artiodactyla and Perissodactyla). Comparative analyses were used to examine associations between three sets of host variables (life history and body mass, social and mating behavior, and ecological traits) and PSR for all parasites combined and for distinct parasite sub-groups. Results from a combination of phylogenetic and non-phylogenetic tests showed that PSR increased with host body size across all parasites groups. Counter to expectations, measures of parasite diversity decreased with host longevity and social group size, and associations between group size and PSR further depended on the underlying mating system of the host species. Our results suggest that body mass, longevity, and social organization influence the diversity and types of parasites reported to infect wild populations of hoofed mammals, and that multiple host and parasite traits can combine in unexpected ways to shape observed patterns.  相似文献   

4.
Density, body mass and parasite species richness of terrestrial mammals   总被引:9,自引:0,他引:9  
We investigated the relationships between helminth species richness and body mass and density of terrestrial mammals. Cross-species analysis and the phylogenetically independent contrast method produced different results. A non-phylogenetic approach (cross-species comparisons) led to the conclusion that parasite richness is linked to host body size. However, an analysis using phylogenetically independent contrasts showed no relationship between host body size and parasite richness. Conversely, a non-phylogenetic approach generated a negative relationship between parasite richness and host density, whereas the independent contrast method showed the opposite trend – that is, parasite richness is positively correlated with host density. From an evolutionary perspective, our results suggest that opportunities for parasite colonization depend more closely on how many hosts are available in a given area than on how large the hosts are. From an epidemiological point of view, our results confirm theoretical models which assume that host density is linked to the opportunity of a parasite to invade a population of hosts. Our findings also suggest that parasitism may be a cost associated with host density. Finally, we provide some support for the non-linear allometry between density and mammal body mass (Silva and Downing, 1995), and explain why host density and host body mass do not relate equally to parasite species richness.  相似文献   

5.
Per Arneberg 《Ecography》2002,25(1):88-94
Epidemiological theory predicts positive correlations between host population density or body mass and species richness among parasite communities. Here I test these predictions by a comparative study of communities of directly transmitted mammalian parasites, gastrointestinal strongylid nematodes. I use data from 45 species of mammals, representing examination of 17 200 individual hosts. The variable studied was the average number of gastrointestinal strongylid nematode species per host population, and three different methods were used to obtain estimates of parasite species richness that are unbiased by number of host individuals examined. Analyses were done using the phylogenetically independent contrast method. Host population density and parasite species richness were strongly positively correlated when the effects of host body weight had been controlled for. Controlling for other variables did not change this, and the relationship was found regardless of method used to correct for uneven sampling effort among host species. A positive relationship between parasite species richness and host body weight was also found, but the effect of host densities had to be controlled for to see this. These relationships between host traits and species richness of directly transmitted parasites are stronger than patterns found using data on indirectly transmitted mammalian parasites, and suggests that links between host traits and parasite species richness are stronger than previously suggested. The results are consistent with parasite species richness being positively linked to pathogen transmission rates and reductions in transmission rates possibly increasing extinction probabilities in parasite populations. The results also suggest that parasites may exert a cost of increases in rate of population energy usage, and thus show that pathogens may be important in generating independence between body mass and rate of population energy usage among host species.  相似文献   

6.
Aggregation and species coexistence in fleas parasitic on small mammals   总被引:2,自引:0,他引:2  
The aggregation model of coexistence states that species coexistence is facilitated if interspecific aggregation is reduced relative to intraspecific aggregation. We investigated the relationship between intraspecific and interspecific aggregation in 17 component communities (the flea assemblage of a host population) of fleas parasitic on small mammals and hypothesized that interspecific interactions should be reduced relative to intraspecific interactions, facilitating species coexistence. We predicted that the reduction of the level of interspecific aggregation in relation to the level of intraspecific aggregation would be positively correlated with total flea abundance and species richness of flea assemblages. We also expected that the higher degree of facilitation of flea coexistence would be affected by host parameters such as body mass, basal metabolic rate (BMR) and depth and complexity of burrows. Results of this study supported the aggregation model of coexistence and demonstrated that, in general, a) conspecific fleas were aggregated across their hosts; b) flea assemblages were not dominated by negative interspecific interactions; and c) the level of interspecific aggregation in flea assemblages was reduced in relation to the level of intraspecific aggregation. Intraspecific aggregation tended to be correlated positively to body mass, burrow complexity and mass-independent BMR of a host. Positive interspecific associations of fleas tended to occur more frequently in species-rich flea assemblages and/or in larger hosts possessing deep complex burrows. Intraspecific aggregation increased relative to interspecific aggregation when species richness of flea infracommunities (the flea assemblage of a host individual) and component communities increased. We conclude that the pattern of flea coexistence is related both to the structure of flea communities and affinities of host species.  相似文献   

7.
Mammalian basal metabolic rates (BMR) increase with body mass, whichs explains approximately 95% of the variation in BMR. However, at a given mass, there remains a large amount of variation in BMR. While many researchers suggest that the overall scaling of BMR with body mass is due to physiological constraints, variation at a given body mass may provide clues as to how selection acts on BMR. Here, we examine this variation in BMR in a broad sample of mammals and we test the hypothesis that, across mammals, body composition explains differences in BMR at a given body mass. Variation in BMR is strongly correlated with variation in muscle mass, and both of these variables are correlated with latitude and ambient temperature. These results suggest that selection alters BMR in response to thermoregulatory pressures, and that selection uses muscle mass as a means to generate this variation.  相似文献   

8.
The concept of basal metabolic rate (BMR) was developed to compare the metabolic rate of animals and initially was important in a clinical context as a means of determining thyroid status of humans. It was also important in defining the allometric relationship between body mass and metabolic rate of mammals. The BMR of mammals varies with body mass, with the same allometric exponent as field metabolic rate and with many physiological and biochemical rates. The membrane pacemaker theory proposes that the fatty acid composition of membrane bilayers is an important determinant of a species BMR. In both mammals and birds, membrane polyunsaturation decreases and monounsaturation increases with increasing body mass and a decrease in mass-specific BMR. The secretion and production of thyroid hormones in mammals are related to body mass, with the allometric exponent similar to BMR; yet there is no body size-related variation in either total or free concentrations of thyroid hormones in plasma of mammals. It is suggested that in different-sized mammals, the secretion/production of thyroid hormones is a result of BMR differences rather than their cause. BMR is a useful concept in some situations but not in others.  相似文献   

9.
Several studies have searched for the key forces behind the diversification of parasite assemblages over evolutionary time. All of these studies have used parasite species richness as their measure of diversity, thus ignoring the relatedness among parasite species and the taxonomic structure of the assemblages. This information is essential, however, if we want to elucidate which processes have caused an assemblage of parasites to acquire new species. Here, we performed a comparative analysis across 110 species of mammalian hosts in which we evaluated the effects of four host traits (body mass, population density, geographic range, and basal metabolic rate) on the diversity of their assemblages of helminth endoparasites. As measures of diversity, we used parasite species richness, as well as the average taxonomic distinctness of the assemblage and its variance; the latter measures are based on the taxonomic distance between two parasite species, computed across all possible species pairs in an assemblage. Unlike parasite species richness, both the average taxonomic distinctness and its variance were unaffected by the number of hosts examined. These two measures of parasite diversity also proved highly repeatable among host populations of the same mammalian species; in contrast, parasite species richness was unreliable as a species character, as it varied as much within a host species than among different host species. Using phylogenetically independent contrasts, and correcting for potential confounding variables, we found that host population density correlated positively with parasite species richness. There were, however, no other relationships between any of the four host traits investigated and either of our measures of parasite diversity. The processes facilitating the taxonomic diversification of parasite assemblages thus remain unclear, but their elucidation will be necessary if we are to fully understand parasite evolution.  相似文献   

10.
Bordes F  Morand S  Ricardo G 《Oecologia》2008,158(1):109-116
Patterns of ectoparasite species richness in mammals have been investigated in various terrestrial mammalian taxa such as primates, ungulates and carnivores. Several ecological or life traits of hosts are expected to explain much of the variability in species richness of parasites. In the present comparative analysis we investigate some determinants of parasite richness in bats, a large and understudied group of flying mammals, and their obligate blood-sucking ectoparasite, streblid bat flies (Diptera). We investigate the effects of host body size, geographical range, group size and roosting ecology on the species richness of bat flies in tropical areas of Venezuela and Peru, where both host and parasite diversities are high. We use the data from a major sampling effort on 138 bat species from nine families. We also investigate potential correlation between bat fly species richness and brain size (corrected for body size) in these tropical bats. We expect a relationship if there is a potential energetic trade-off between costly large brains and parasite-mediated impacts. We show that body size and roosting in cavities are positively correlated with bat fly species richness. No effects of bat range size and group size were observed. Our results also suggest an association between body mass-independent brain size and bat fly species richness. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
D. H. Clayton  B. A. Walther 《Oikos》2001,94(3):455-467
Host‐parasite systems can be powerful arenas in which to explore factors influencing community structure. We used a comparative approach to examine the influence of host ecology and morphology on the diversity of chewing lice (Insecta: Phthiraptera) among 52 species of Peruvian birds. For each host species we calculated two components of parasite diversity: 1) cumulative species richness, and 2) mean abundance. We tested for correlations between these parasite indices and 13 host ecological and morphological variables. Host ecological variables included geographic range size, local population density, and microhabitat use. Host morphological variables included body mass, plumage depth, and standard dimensions of bill, foot and toenail morphology, all of which could influence the efficiency of anti‐parasite grooming. Data were analysed using statistical and comparative methods that control for sampling effort and host phylogeny. None of the independent host variables correlated with louse species richness when treated as a dependent variable. When richness was treated as an independent variable, however, it was positively correlated with mean louse abundance. Host body mass was also positively correlated with mean louse abundance. When louse richness and host body mass were held constant, mean louse abundance correlated negatively with the degree to which the upper mandible of the host's bill overhangs the lower mandible. This correlation suggests that birds with longer overhangs are better at controlling lice during preening. We propose a specific functional hypothesis in which preening damages lice by exerting a shearing force between the overhang and the tip of the lower mandible. This study is the first to suggest a parasite‐control function of such a detailed component of bill morphology across species. Avian biologists have traditionally focused almost exclusively on bills as tools for feeding. We suggest that the adaptive radiation of bill morphology should be reinterpreted with both preening and feeding in mind.  相似文献   

12.
The locomotor performance (absolute maximum running speed [MRS]) of 120 mammals was analyzed for four different locomotor modes (plantigrade, digitigrade, unguligrade, and lagomorph-like) in terms of body size and basal metabolic rate (BMR). Analyses of conventional species data showed that the MRS of plantigrade and digitigrade mammals and lagomorphs increases with body mass, whereas that of unguligrade mammals decreases with body mass. These trends were confirmed in plantigrade mammals and lagomorphs using phylogenetically independent contrasts. Multiple regression analyses of MRS contrasts (dependent variable) as a function of body mass and BMR contrasts (predictor variables) revealed that BMR was a significant predictor of MRS in the complete data set, as well as in plantigrade and nonplantigrade mammals. However, there was severe multicollinearity in the nonplantigrade model that may influence the interpretation of these models. Although these data show mass-independent correlation between BMR and MRS, they are not necessarily indicative of a cause-effect relationship. However, the analyses do identify a negligible role of body size associated with MRS once phylogenetic and BMR effects are controlled, suggesting that the body size increase in large mammals over time (i.e., Cope's rule) can probably rule out MRS as a driving variable.  相似文献   

13.
Whitney Preisser 《Ecography》2019,42(7):1315-1330
The latitudinal diversity gradient (LDG), or the trend of higher species richness at lower latitudes, has been well documented in multiple groups of free‐living organisms. Investigations of the LDG in parasitic organisms are comparatively scarce. Here, I investigated latitudinal patterns of parasite diversity by reviewing published studies and by conducting a novel investigation of the LDG of helminths (parasitic nematodes, trematodes and cestodes) of cricetid rodents (Rodentia: Cricetidae). Using host–parasite records from 175 parasite communities and 60 host species, I tested for the presence and direction of a latitudinal pattern of helminth richness. Additionally, I examined four abiotic factors (mean annual temperature, annual precipitation, annual temperature range and annual precipitation range) and two biotic variables (host body mass and host diet) as potential correlates of parasite richness. The analyses were performed with and without phylogenetic comparative methods, as necessary. In this system, helminths followed the traditional LDG, with increasing species richness with decreasing latitude. Nematode richness appeared to drive this pattern, as cestodes and trematodes exhibited a reverse LDG and no latitudinal pattern, respectively. Overall helminth richness and nematode richness were higher in areas with higher mean annual temperatures, annual precipitation and annual precipitation ranges and lower annual temperature ranges, characteristics that often typify lower latitudes. Cestode richness was higher in areas of lower mean annual temperatures, annual precipitation and annual precipitation ranges and higher annual temperature ranges, while trematode richness showed no relationship with climate variables when phylogenetic comparative methods were used. Host diet was significantly correlated with cestode and trematode species richness, while host body mass was significantly correlated with nematode species richness. Results of this study support a complex association between parasite richness and latitude, and indicate that researchers should carefully consider other factors when trying to understand diversity gradients in parasitic organisms.  相似文献   

14.
Biodiversity is not distributed homogeneously in space, and it often covaries with productivity. The shape of the relationship between diversity and productivity, however, varies from a monotonic linear increase to a hump-shaped curve with maximum diversity values corresponding to intermediate productivity. The system studied and the spatial scale of study may affect this relationship. Parasite communities are useful models to test the productivity-diversity relationship because they consist of species belonging to a restricted set of higher taxa common to all host species. Using total parasite biovolume per host individual as a surrogate for community productivity, we tested the relationship between productivity and species richness among assemblages of metazoan parasites in 131 vertebrate host species. Across all host species, we found a linear relationship between total parasite biovolume and parasite species richness, with no trace of a hump-shaped curve. This result remained after corrections for the potential confounding effect of the number of host individuals examined per host species, host body mass, and phylogenetic relationships among host species. Although weaker, the linear relationship remained when the analyses were performed within the five vertebrate groups (fish, amphibians, reptiles, mammals and birds) instead of across all host species. These findings agree with the classic isolationist-interactive continuum of parasite communities that has become widely accepted in parasite ecology. They also suggest that parasite communities are not saturated with species, and that the addition of new species will result in increased total parasite biovolume per host. If the number of parasite species exploiting a host population is not regulated by processes arising from within the parasite community, external factors such as host characteristics may be the main determinants of parasite diversity.  相似文献   

15.
Robert Poulin  Klaus Rohde 《Oecologia》1997,110(2):278-283
Parasite communities are the product of acquisitions and losses of parasite species during the evolutionary history of their host. When comparing the parasite communities of different host species to assess the role of ecological variables as determinants of parasite species richness, a correction must be made for the possible phylogenetic inheritance of parasites from ancestral hosts independent of host ecology. We performed a comparative analysis of the metazoan ectoparasite communities on the heads and gills of 111 species of marine fish. The influences of host body size, host schooling behaviour and water temperature were tested after controlling for both sampling and phylogenetic effects. Overall, water temperature correlated positively with both parasite species richness and abundance, whereas fish size only correlated with parasite abundance. The correlation across all fish species between water temperature and parasite species richness was dependent on an outlier point. The results, however, generally held when fish from different biogeographical areas (Pacific and Atlantic) were analysed separately. In all analyses, parasite species richness always correlated strongly with parasite abundance. There was no evidence that schooling fish taxa harboured richer or more abundant ectoparasite communities than their non-schooling sister taxa, possibly because of the small number of contrasts available for that test. Overall, whereas both water temperature and host size affect the number of parasite individuals that can be harboured by a fish, only temperature appears important as a determinant of ectoparasite community richness. Received: 30 May 1996 / Accepted: 23 October 1996  相似文献   

16.
The factors influencing the basal rate of metabolism (BMR) in 639 species of mammals include body mass, food habits, climate, habitat, substrate, a restriction to islands or highlands, use of torpor, and type of reproduction. They collectively account for 98.8% of the variation in mammalian BMR, but often interact in complex ways. The factor with the greatest impact on BMR, as always, is body mass (accounting for 96.8% of its variation), the extent of its impact reflecting the 10(6.17)-fold range of mass in measured species. The attempt to derive mathematically the power relationship of BMR in mammals is complicated by the necessity to include all of the factors that influence BMR that are themselves correlated with body mass. BMR also correlates with taxonomic affiliation because many taxa are distinguished by their ecological and behavioral characteristics. Phylogeny, reflecting previous commitments, may influence BMR either through a restriction on the realized range of behaviors or by opening new behavioral and ecological opportunities. A new opportunity resulted from the evolution by eutherians of a type of reproduction that permitted species feeding on high quality resources to have high BMRs. These rates facilitated high rates of gas, nutrient, and waste exchange between a pregnant eutherian and her placental offspring. This pattern led to high rates of reproduction in some eutherians, a response denied all monotremes and marsupials, thereby permitting eutherians to occupy cold-temperate and polar environments and to dominate other mammals in all environments to which ecologically equivalent eutherians had access.  相似文献   

17.
Some hosts harbor diverse parasite communities, whereas others are relatively parasite free. Many factors have been proposed to account for patterns of parasite species richness, but few studies have investigated competing hypotheses among multiple parasite communities in the same host clade. We used a comparative data set of 941 host-parasite combinations, representing 101 anthropoid primate species and 231 parasite taxa, to test the relative importance of four sets of variables that have been proposed as determinants of parasite community diversity in primates: host body mass and life history, social contact and population density, diet, and habitat diversity. We defined parasites broadly to include not only parasitic helminths and arthropods but also viruses, bacteria, fungi, and protozoa, and we controlled for effects of uneven sampling effort on per-host measures of parasite diversity. In nonphylogenetic tests, body mass was correlated with total parasite diversity and the diversity of helminths and viruses. When phylogeny was taken into account, however, body mass became nonsignificant. Host population density, a key determinant of parasite spread in many epidemiological models, was associated consistently with total parasite species richness and the diversity of helminths, protozoa, and viruses tested separately. Geographic range size and day range length explained significant variation in the diversity of viruses.  相似文献   

18.
Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.  相似文献   

19.
Zoogeographical effects on the basal metabolic rate (BMR) of 487 mammal species were analyzed using conventional and phylogenetically independent ANCOVA. Minimal BMR variance occurred at a "constrained body mass" of 358 g, whereas maximum variance occurred at the smallest and largest body masses. Significant differences in BMR were identified for similar-sized mammals from the six terrestrial zoogeographical zones (Afrotropical, Australasian, Indomalayan, Nearctic, Neotropical, and Palearctic). Nearctic and Palearctic mammals had higher basal rates than their Afrotropical, Australasian, Indomalayan, and Neotropical counterparts. Desert mammals had lower basal rates than mesic mammals. The patterns were interpreted with a conceptual model describing geographical BMR variance in terms of the influence of latitudinal and zonal climate variability. Low and high basal rates were explained in unpredictable and predictable environments, respectively, especially in small mammals. The BMR of large mammals may be influenced in addition by mobility and predation constraints. Highly mobile mammals tend to have high BMRs that may somehow facilitate fast running speeds, whereas less mobile mammals are generally dietary specialists and are often armored. The model thus integrates physiological and ecological criteria and makes predictions concerning body size and life-history evolution, island effects, and locomotor energetics.  相似文献   

20.
Valencak TG  Ruf T 《Aging cell》2007,6(1):15-25
Although generally considered as beneficial components of dietary fats, polyunsaturated fatty acids (PUFA) have been suspected to compromise maximum lifespan (MLSP) in mammals. Specifically, high amounts of phospholipid PUFAs are thought to impair lifespan due to an increase in the susceptibility of membranes to lipid peroxidation and its damaging effect on cellular molecules. Also, there is evidence from in vitro studies suggesting that highly unsaturated PUFAs elevate basal metabolic rate (BMR). Previous comparative studies in this context were based on small sample sizes, however, and, except for one study, failed to address possible confounding influences of body weight and taxonomic relations between species. Therefore, we determined phospholipid membrane composition in skeletal muscle from 42 mammalian species to test for a relation with published data on MLSP, and with literature data on BMR (30 species). Using statistical models that adjust for the effects of body weight and phylogeny, we found that among mammals, MLSP indeed decreases as the ratio of n-3 to n-6 PUFAs increases. In contrast to previous studies, we found, however, no relation between MLSP and either membrane unsaturation (i.e. PUFA content or number of double bonds) or to the very long-chain, highly unsaturated docosahexaenoic acid (DHA). Similarly, our data set gave no evidence for any notable relation between muscle phospholipid fatty acid composition and BMR, or MLSP and BMR in mammals. These results contradict the 'membrane pacemaker theory of aging', that is, the concept of a direct link between high amounts of membrane PUFAs, elevated BMR, and thus, impaired longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号