首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present, dyslipidemia is most commonly treated with lipid-altering pharmacological therapies. However, safety concerns regarding the use of these agents have prompted the need for safe and efficacious nonpharmacological lipid-altering interventions. One such natural therapy is the combination of plant sterols and endurance training. This combination lifestyle intervention has been shown to decrease total cholesterol, low-density lipoprotein (LDL) cholesterol and triglyceride concentrations while increasing high-density lipoprotein (HDL) cholesterol concentrations. However, the mechanisms that underlie these positive lipid alterations have yet to be clarified. Thus, the purpose of this review is to evaluate individual effects of plant sterols and exercise training on lipid levels while attempting to elucidate the possible independent and synergistic mechanisms of action responsible for these modulations. Results reveal that plant sterols decrease both total and LDL cholesterol levels by reducing exogenous cholesterol absorption by way of cholesterol displacement in the intestinal lumen. Additionally, the intestinal membrane transport proteins, ABCG5, ABCG8, as well as NPC1L1, have also been implicated in plant sterol-mediated cholesterol lowering. Conversely, exercise decreases triglyceride levels by reducing hepatic very low-density lipoprotein secretion and increasing skeletal lipoprotein lipase activity. In addition, endurance training was shown to increase HDL cholesterol levels by way of HDL subfraction alterations, in conjunction with changing reverse cholesterol transport enzyme activities. Moreover, plant sterols and exercise may work synergistically to alter lipid levels by modulating lipoprotein transport, composition, release and metabolism. In sum, the present review lends further insight as to the metabolic benefits of adopting a healthy lifestyle, including plant sterols and endurance training, in the treatment of dyslipidemia.  相似文献   

2.
Consumption of plant sterols and treatment with ezetimibe both reduce cholesterol absorption in the intestine. However, the mechanism of action differs between the two treatments, and the consequences of combination treatment are unknown. Therefore, we performed a double-blind, placebo-controlled, crossover study for the plant sterol component with open-label ezetimibe treatment. Forty mildly hypercholesterolemic subjects were randomized to the following treatments for 4 weeks each: 10 mg/day ezetimibe combined with 25 g/day control spread; 10 mg/day ezetimibe combined with 25 g/day spread containing 2.0 g of plant sterols; 25 g/day spread containing 2.0 g of plant sterols; and placebo treatment consisting of 25 g/day control spread. Combination treatment of plant sterols and ezetimibe reduced low density lipoprotein cholesterol (LDL-C) by 1.06 mmol/l (25.2%; P < 0.001) compared with 0.23 mmol/l (4.7%; P = 0.006) with plant sterols and 0.94 mmol/l (22.2%; P < 0.001) with ezetimibe monotherapy. LDL-C reduction conferred by the combination treatment did not differ significantly from ezetimibe monotherapy (-0.12 mmol/l or -3.5%; P = 0.13). Additionally, the plasma lathosterol-to-cholesterol ratio increased with all treatments. Sitosterol and campesterol ratios increased after plant sterol treatment and decreased upon ezetimibe and combination therapy. Our results indicate that the combination of plant sterols and ezetimibe has no therapeutic benefit over ezetimibe monotherapy in subjects with mild hypercholesterolemia.  相似文献   

3.
Ghrelin, leptin, and adiponectin play an important role in the regulation of energetic homeostasis, but physiological relationships between these hormones have not been elucidated. This study was therefore designed to characterize the association between serum acylated ghrelin, leptin, and adiponectin levels, as well as insulin resistance evaluated by homeostasis model of assessment in 32 normal-weight and 60 age-matched metabolically healthy obese women. In normal-weight, but not in obese women, we found a positive linear correlation between leptin and ghrelin (r=0.375; p=0.034). In the multiply regression analysis we observed the change of direction of leptin influence on acylated ghrelin level from positive in normal-weight (p=0.001) to negative in obese women without insulin-resistance (p=0.033); in obese women with insulin resistance leptin was not significantly associated with ghrelin. In neither group was any linear correlation found between ghrelin and adiponectin. However, by multivariate analysis adiponectin was positively associated with ghrelin, but only in obese women without insulin resistance (p=0.01). In conclusion, in normal-weight women leptin is positively correlated with acylated ghrelin. In obese women without insulin resistance different interactions between both hormones might reflect a physiological mechanism of adaptation to a positive energy balance.  相似文献   

4.
A low sialic acid content in low density lipoprotein (LDL) has been associated with atherogenicity and coronary artery disease (CAD) in many but not all studies. We investigated associations of the sialic acid-to-apolipoprotein B (apoB) ratio of LDL with lipoprotein lipid concentrations, kinetics of LDL, metabolism of cholesterol, and the presence of CAD in 98 subjects (CAD(+), n = 56; CAD(-), n = 42). The sialic acid ratios of total, dense, and very dense LDL were lower in the CAD(+) than CAD(-) subjects, especially at high sialic acid ratios. The LDL sialic acid ratio was inversely associated with respective lipid and apoB concentrations and positively with lipid-to-apoB ratios of LDL. The transport rates (TRs) for total and dense LDL apoB were negatively associated with their sialic acid ratios. The sialic acid ratio of dense LDL, but not that of total LDL, was inversely correlated with serum levels of cholesterol precursor sterols, indicators of cholesterol synthesis, and positively with serum levels of plant sterols, indicators of cholesterol absorption. In addition, the TR for dense LDL was positively correlated with cholesterol synthesis.In conclusion, a low LDL sialic acid ratio was associated with CAD, high numbers of small LDL particles, and a high TR for LDL apoB, and in dense LDL also with high synthesis and low absorption of cholesterol.  相似文献   

5.
The relationships of plasma lipid and apolipoprotein (apo) concentrations to hepatic low-density lipoprotein (LDL) receptor activity were examined in 21 subjects (16 females, 5 males), who were undergoing laparotomy for non-neoplastic disease (cholecystectomy in 16). None had familial hypercholesterolemia, or renal, endocrine or hepatic disease. Ages were 37-77 years (mean, 58 years), plasma cholesterol concentrations 4.09-6.72 mmol/l (5.38) and plasma triacylglycerol concentrations 0.75-2.35 mmol/l (1.36). Receptor activity was quantified in vitro as the total saturable binding and EDTA-suppressible binding (representing apoB,E receptors) of 125I-labelled human LDL (15 micrograms protein/ml) by liver homogenate at 37 degrees C. There were no significant differences between men and women in 125I-labeled LDL binding. In the pooled data, EDTA-suppressible binding averaged 50 ng 125I-LDL protein/mg cell protein (S.D., 15). Total saturable binding averaged 2-fold greater (mean, 101 ng/mg; S.D., 32). Plasma cholesterol, LDL cholesterol and apoB concentrations were negative functions of both EDTA-suppressible binding and total saturable binding, but the correlations with EDTA-suppressible binding were stronger (cholesterol: r = -0.59, P less than 0.01; LDL cholesterol: r = -0.48, P less than 0.05; apoB: r = -0.61, P less than 0.01). Plasma triacylglycerol, high-density lipoprotein cholesterol and apoA-I concentrations were not related to either measure of receptor activity. These results provide evidence that the activity of apoB,E receptors in the liver is a major determinant of the plasma LDL concentration in middle-aged and elderly humans.  相似文献   

6.

Introduction

Health benefits of low-to-moderate alcohol consumption may operate through an improved lipid profile. A Mendelian randomization (MR) approach was used to examine whether alcohol consumption causally affects lipid levels.

Methods

This analysis involved 10,893 European Americans (EA) from the Atherosclerosis Risk in Communities (ARIC) study. Common and rare variants in alcohol dehydrogenase and acetaldehyde dehydrogenase genes were evaluated for MR assumptions. Five variants, residing in the ADH1B, ADH1C, and ADH4 genes, were selected as genetic instruments and were combined into an unweighted genetic score. Triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-c) and its subfractions (HDL2-c and HDL3-c), low-density lipoprotein cholesterol (LDL-c), small dense LDL-c (sdLDL-c), apolipoprotein B (apoB), and lipoprotein (a) (Lp(a)) levels were analyzed.

Results

Alcohol consumption significantly increased HDL2-c and reduced TG, total cholesterol, LDL-c, sdLDL-c, and apoB levels. For each of these lipids a non-linear trend was observed. Compared to the first quartile of alcohol consumption, the third quartile had a 12.3% lower level of TG (p < 0.001), a 7.71 mg/dL lower level of total cholesterol (p = 0.007), a 10.3% higher level of HDL2-c (p = 0.007), a 6.87 mg/dL lower level of LDL-c (p = 0.012), a 7.4% lower level of sdLDL-c (p = 0.037), and a 3.5% lower level of apoB (p = 0.058, poverall = 0.022).

Conclusions

This study supports the causal role of regular low-to-moderate alcohol consumption in increasing HDL2-c, reducing TG, total cholesterol, and LDL-c, and provides evidence for the novel finding that low-to-moderate consumption of alcohol reduces apoB and sdLDL-c levels among EA. However, given the nonlinearity of the effect of alcohol consumption, even within the range of low-to-moderate drinking, increased consumption does not always result in a larger benefit.  相似文献   

7.
Abnormal cholesterol metabolism, including low intestinal cholesterol absorption and elevated synthesis, is prevalent in diabetes, obesity, hyperlipidemia, and the metabolic syndrome. Diet-induced weight loss improves cholesterol absorption in these populations, but it is not known if endurance exercise training also improves cholesterol homeostasis. To examine this, we measured circulating levels of campesterol, sitosterol, and lathosterol in 65 sedentary subjects (average age 59 years; with at least one metabolic syndrome risk factor) before and after 6 months of endurance exercise training. Campesterol and sitosterol are plant sterols that correlate with intestinal cholesterol absorption, while lathosterol is a marker of whole body cholesterol synthesis. Following the intervention, plant sterol levels were increased by 10% (p<0.05), but there was no change in plasma lathosterol. In addition, total and LDL-cholesterol were reduced by 0.16 mmol and 0.10 mmol, respectively (p<0.05), while HDL-C levels increased by 0.09 mmol (p<0.05). Furthermore, the change in plant sterols was positively correlated with the change in VO2max (r=0.310, p=0.004), independent of other metabolic syndrome risk factors. These data indicate that exercise training reduces plasma cholesterol despite increasing cholesterol absorption in subjects with metabolic syndrome risk factors.  相似文献   

8.
The effects of the long-term administration of the dietary fats coconut oil and corn oil at 31% of calories with or without 0.1% (wt/wt) dietary cholesterol on plasma lipoproteins, apolipoproteins (apo), hepatic lipid content, and hepatic apoA-I, apoB, apoE, and low density lipoprotein (LDL) receptor mRNA abundance were examined in 27 cebus monkeys. Relative to the corn oil-fed animals, no significant differences were noted in any of the parameters of the corn oil plus cholesterol-fed group. In animals fed coconut oil without cholesterol, significantly higher (P less than 0.05) plasma total cholesterol (145%), very low density lipoprotein (VLDL) + LDL (201%) and high density lipoprotein (HDL) (123%) cholesterol, apoA-I (103%), apoB (61%), and liver cholesteryl ester (263%) and triglyceride (325%) levels were noted, with no significant differences in mRNA levels relative to the corn oil only group. In animals fed coconut oil plus cholesterol, all plasma parameters were significantly higher (P less than 0.05), as were hepatic triglyceride (563%) and liver apoA-I (123%) and apoB (87%) mRNA levels relative to the corn oil only group, while hepatic LDL receptor mRNA (-29%) levels were significantly lower (P less than 0.05). Correlation coefficient analyses performed on pooled data demonstrated that liver triglyceride content was positively associated (P less than 0.05) with liver apoA-I and apoB mRNA levels and negatively associated (P less than 0.01) with hepatic LDL receptor mRNA levels. Liver free and esterified cholesterol levels were positively correlated (P less than 0.05) with liver apoE mRNA levels and negatively correlated (P less than 0.025) with liver LDL receptor mRNA levels. Interestingly, while a significant correlation (P less than 0.01) was noted between hepatic apoA-I mRNA abundance and plasma apoA-I levels, no such relationship was observed between liver apoB mRNA and plasma apoB levels, suggesting that the hepatic mRNA of apoA-I, but not that of apoB, is a major determinant of the circulating levels of the respective apolipoprotein. Our data indicate that a diet high in saturated fat and cholesterol may increase the accumulation of triglyceride and cholesterol in the liver, each resulting in the suppression of hepatic LDL receptor mRNA levels. We hypothesize that such elevations in hepatic lipid content differentially alter hepatic apoprotein mRNA levels, with triglyceride increasing hepatic mRNA concentrations for apoA-I and B and cholesterol elevating hepatic apoE mRNA abundance.  相似文献   

9.
We investigated the changes of cholesterol and non-cholesterol sterol metabolism during plant stanol ester margarine feeding in 153 hypercholesterolemic subjects. Rapeseed oil (canola oil) margarine without (n = 51) and with (n = 102) stanol (2 or 3 g/day) ester was used for 1 year. Serum sterols were analyzed with gas-liquid chromatography. The latter showed a small increase in sitostanol peak during stanol ester margarine eating. Cholestanol, campesterol, and sitosterol proportions to cholesterol were significantly reduced by 5-39% (P < 0.05 or less for all) by stanol esters; the higher their baseline proportions the higher were their reductions. The precursor sterol proportions were significantly increased by 10- 46%, and their high baseline levels predicted low reduction of serum cholesterol. The decrease of the scheduled stanol dose from 3 to 2 g/day after 6-month feeding increased serum cholesterol by 5% (P < 0. 001) and serum plant sterol proportions by 8-13% (P < 0.001), but had no consistent effect on precursor sterols. In twelve subjects, the 12-month level of LDL cholesterol exceeded that of baseline; the non-cholesterol sterol proportions suggested that stimulated synthesis with relatively weak absorption inhibition contributed to the non-responsiveness of these subjects. In conclusion, plant stanol ester feeding lowers serum cholesterol in about 88% of subjects, decreases the non-cholesterol sterols that reflect cholesterol absorption, increases the sterols that reflect cholesterol synthesis, but also slightly increases serum plant stanols. Low synthesis and high absorption efficiency of cholesterol results in the greatest benefit from stanol ester consumption.  相似文献   

10.

[Purpose]

The purpose of the study was to verify the effects of Pilates exercise by observing the impact of 8 weeks of Pilates exercise on lipid metabolism and inflammatory cytokine mRNA expression in female undergraduates in their 20s who had no prior experience in Pilates exercise and had not exercised in the previous 6 months.

[Methods]

There were 18 subjects with no prior experience in Pilates exercise. The subjects were separated into the Pilates exercise group (n = 9) and the non-exercise control group (n = 9). The former performed Pilates exercise for 60-70 minutes over 8 weeks with a gradual strength increase of 9-16 in the Rating of Perceived Exercise (RPE). The body composition, creatine kinase in the bloodstream and lipid metabolism (TC, LDL-C, HDL-C, TG) were measured before and after the experiment and Real-Time PCR was used to investigate the mRNA expression of the inflammatory cytokines IL-6 and TNF-⍺.

[Results]

The creatine kinase (CK) in the blood had significant differences between the groups. The test group showed significant increase compared to the control group after 8 weeks of Pilates exercise (p = 0.007). Lipid analysis showed that the level of high-density lipoprotein cholesterol (HDL-C) was significantly different in the two groups (p = 0.049), with the Pilates exercise group exhibiting significantly higher levels compared to the control group. No significant differences were observed in the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG). IL-6 mRNA expression did not show significant differences between the groups either. Timing and TNF-α mRNA expression showed significant effect in both the exercise and the control groups (p = 0.013) but no correlation.

[Conclusion]

It was found from the study that Pilates exercise for 8 weeks affected CK expression (the muscle damage marker) and induced positive changes in the levels of high-density lipoprotein.  相似文献   

11.
Objective: Prior studies have reported ethnic differences in adiponectin and ghrelin, but few have assessed the role of body size in normoglycemic women. We compared fasting adiponectin and ghrelin concentrations in normoglycemic 40‐ to 80‐year‐old Filipino, African‐American, and white women. Methods: Participants included women from the Rancho Bernardo Study (n = 143), the University of California‐San Diego Filipino Women's Health Study (n = 136), and the Health Assessment Study of African‐American Women (n = 212). A 2‐hour oral glucose tolerance test was administered; glucose, insulin, lipid, and anthropometric measurements were obtained. Fasting adiponectin and ghrelin were measured by radioimmunoassay. Results: Whites and Filipinas had similar BMI (23.7 and 24.3 kg/m2, respectively), waist girth (75.6 and 77.2 cm, respectively), and total body fat (27.4 and 28.5%, respectively); African‐Americans had significantly larger BMI (28.8 kg/m2), waist girth (86.3 cm), and body fat (39.6%, p < 0.0001). Adiponectin was lower in Filipinas (8.90 µg/mL) and African‐Americans (9.67 µg/mL) compared with whites (15.6 µg/mL, p < 0.001) after adjusting for age, homeostasis model assessment of insulin resistance (HOMA‐IR), and waist‐to‐hip ratio. Compared with whites, Filipinas (β = ?5.06, p < 0.0001) and African‐Americans (β = ?6.85, p < 0.0001) had significantly lower adiponectin levels after adjusting for age, waist‐to‐hip ratio, HOMA‐IR, triglycerides, high‐density lipoprotein (HDL) cholesterol, exercise, and alcohol use. Ghrelin was significantly lower in Filipinas compared with African‐Americans (1146.9 vs. 1412.2 pg/mL, p < 0.001), and this observation persisted in multivariable analysis (β = ?245.4, p < 0.0001). Ghrelin levels did not differ between whites (1356.9 pg/mL) and either ethnic group. Discussion: Normoglycemic Filipino and African‐American women had significantly lower adiponectin concentrations than white women, and Filipinas had lower ghrelin levels than African‐Americans, independently of body size or indices of insulin resistance or lipids.  相似文献   

12.
Dietary plant sterols accumulate in the brain   总被引:1,自引:0,他引:1  
Dietary plant sterols and cholesterol have a comparable chemical structure. It is generally assumed that cholesterol and plant sterols do not cross the blood-brain barrier, but quantitative data are lacking. Here, we report that mice deficient for ATP-binding cassette transporter G5 (Abcg5) or Abcg8, with strongly elevated serum plant sterol levels, display dramatically increased (7- to 16-fold) plant sterol levels in the brain. Apolipoprotein E (ApoE)-deficient mice also displayed elevated serum plant sterol levels, which was however not associated with significant changes in brain plant sterol levels. Abcg5- and Abcg8-deficient mice were found to carry circulating plant sterols predominantly in high-density lipoprotein (HDL)-particles, whereas ApoE-deficient mice accommodated most of their serum plant sterols in very low-density lipoprotein (VLDL)-particles. This suggests an important role for HDL and/or ApoE in the transfer of plant sterols into the brain. Moreover, sitosterol upregulated apoE mRNA and protein levels in astrocytoma, but not in neuroblastoma cells, to a higher extend than cholesterol. In conclusion, dietary plant sterols pass the blood-brain barrier and accumulate in the brain, where they may exert brain cell type-specific effects.  相似文献   

13.
The purpose of the present study was to determine the effects of exercise training on serum cholesterol level and hepatic cholesterol metabolism in rats. Twenty-four male Wistar strain rats, aged 6 weeks, were assigned to one of three experimental groups; control (n = 8), exercised 20 minutes a day (E20, n = 8), and exercised 60 minutes a day (E60, n = 8). Rats were sacrificed after ten weeks exercise. The levels of serum total cholesterol and HDL-cholesterol in the group E20 and group E60 were lower than that of control, 8% and 24% (p less than 0.01) for the total cholesterol and 10% and 24% (p less than 0.05) for the HDL-cholesterol, respectively. The activity of HMG-CoA reductase in liver microsome was significantly higher in the group E60 than that of control. The hepatic microsomal HMG-CoA reductase activity was negatively related to serum total (r = -0.62, p less than 0.01) and HDL (r = -0.58, p less than 0.01) cholesterol levels. From these results, we concluded that the enhancement of the cholesterol metabolism in the liver by exercise is a major course of the exercise-induced change in serum cholesterol of Wistar rats.  相似文献   

14.
Epidemiological studies have associated low circulating levels of the adipokine adiponectin with multiple metabolic disorders, including metabolic syndrome, obesity, insulin resistance, type II diabetes, and cardiovascular disease. Recently, we reported that adiponectin selectively overexpressed in mouse macrophages can improve insulin sensitivity and protect against inflammation and atherosclerosis. To further investigate the role of adiponectin and macrophages on lipid and lipometabolism in vivo, we engineered the expression of adiponectin in mouse macrophages (Ad-TG mice) and examined effects on plasma lipoproteins and on the expression levels of genes involved in lipoprotein metabolism in tissues. Compared with the wild-type (WT) mice, Ad-TG mice exhibited significantly lower levels of plasma total cholesterol (-21%, P < 0.05) due to significantly decreased LDL (-34%, P < 0.05) and VLDL (-32%, P < 0.05) cholesterol concentrations together with a significant increase in HDL cholesterol (+41%, P < 0.05). Further studies investigating potential mechanisms responsible for the change in lipoprotein cholesterol profile revealed that adiponectin-producing macrophages altered expression of key genes in liver tissue, including apoA1, apoB, apoE, the LDL receptor, (P < 0.05), and ATP-binding cassette G1 (P < 0.01). In addition, Ad-TG mice also exhibited higher total and high-molecular-weight adipnection levels in plasma and increased expression of the anti-inflammatory cytokine IL-10 as well as a decrease in the proinflammatory cytokine IL-6 in adipose tissue. These results indicate that macrophages engineered to produce adiponectin can influence in vivo gene expression in adipose tissue in a manner that reduces inflammation and macrophage infiltration and in liver tissue in a manner that alters the circulating lipoprotein profile, resulting in a decrease in VLDL and LDL and an increase in HDL cholesterol. The data support further study addressing the use of genetically manipulated macrophages as a novel therapeutic approach for treatment of cardiometabolic disease.  相似文献   

15.
Human hepatoma HepG2 cells were used to study the effects of cholesterol loading and depletion on apolipoprotein B (apoB) secretion and low-density lipoprotein (LDL) receptor activity. Exposure of HepG2 cells to cholesterol and oleic acid, which elevated intracellular cholesterol levels, stimulated apoB secretion and reduced receptor-mediated uptake of LDL, whereas recombinant complexes of apolipoprotein A-I with dimyristoylphosphatidylcholine, which depleted the cellular cholesterol pool, inhibited apoB secretion and up-regulated LDL receptors. Significant negative correlation (r = -0.92, P less than 0.001) between the levels of apoB secretion and LDL uptake was found. These data suggest that the cholesterol content of the cells may induce concomitant changes in apoB secretion and LDL receptor activity.  相似文献   

16.
Objective: The metabolic syndrome is characterized by defective hepatic apolipoprotein B‐100 (apoB) metabolism. Hepato‐intestinal cholesterol metabolism may contribute to this abnormality. Research Methods and Procedures: We examined the association of cholesterol absorption and synthesis with the kinetics of apoB in 35 obese subjects with the metabolic syndrome. Plasma ratios of campesterol and lathosterol to cholesterol were used to estimate cholesterol absorption and synthesis, respectively. Very‐low‐density lipoprotein (VLDL), intermediate‐density lipoprotein (IDL), and low‐density lipoprotein apoB kinetics were studied using stable isotopy and mass spectrometry. Kinetic parameters were derived using multicompartmental modeling. Results: Compared with controls, the obese subjects had significantly lower plasma ratios of campesterol, but higher plasma ratios of lathosterol (p < 0.05 in both). This was associated with elevated VLDL‐apoB secretion rate (p < 0.05) and delayed fractional catabolism of IDL and low‐density lipoprotein‐apoB (p < 0.01). In the obese group, plasma ratios of campesterol correlated inversely with VLDL‐apoB secretion (r = ?0.359, p < 0.05), VLDL‐apoB (r = ?0.513, p < 0.01) and IDL‐apoB (r = ?0.511, p < 0.01) pool size, and plasma lathosterol ratio (r = ?0.366, p < 0.05). Subjects with low cholesterol absorption had significantly higher VLDL‐apoB secretion, VLDL‐apoB and IDL‐apoB pool size, and plasma lathosterol ratio (p < 0.05 in both) than those with high cholesterol absorption. Discussion: Subjects with the metabolic syndrome have oversecretion of VLDL‐apoB and decreased catabolism of apoB‐containing particles and low absorption and high synthesis rates of cholesterol. These changes in cholesterol homeostasis may contribute to the kinetic defects in apoB metabolism in the metabolic syndrome.  相似文献   

17.
Both plant sterols and lecithin are used as dietary supplements for lowering blood cholesterol in Western countries. This study evaluated the possibility of an additive effect of these ingredients on the regulation of lipid concentrations and cholesterol metabolism. Male Sprague-Dawley rats were randomly divided into three groups, and fed one of the following diets for 5 weeks; high cholesterol diet (HCD), phytosterol mixture-supplemented diet (PD, HCD+0.25% phytosterols), or phytosterol mixture and lecithin-supplemented diet (PLD, PD+0.15% lecithin). Feeding the PD for 5 weeks resulted in a 34% and 41% decrease in plasma total- and VLDL+LDL-cholesterol levels, respectively, and a 23% decrease in hepatic cholesterol content compared to those for the HCD rats (p < 0.05). These cholesterol-lowering properties of the phytosterol mixture were also associated with the down-regulation of hepatic acyl CoA:cholesterol acytransferase (ACAT) activity (p < 0.05). Addition of lecithin plus phytosterol mixture to the hypercholesterolemic diet did not significantly affect blood and hepatic lipid concentrations (with the exception of 36% decrease in hepatic triglyceride level, p < 0.05) as well as hepatic ACAT activity compared to feeding the hypercholesterolemic diet supplemented with phytosterol alone. These results indicate that combining lecithin, at a 0.15% level, with a phytosterol mixture-supplemented diet does not exhibit an additive effect in regulating hepatic ACAT activity or lowering blood cholesterol in hypercholesterolemic rats.  相似文献   

18.
BACKGROUND: In animal models ghrelin reduces cardiac afterload and increases cardiac output via receptors in the cardiovascular system. The aim of our study was to evaluate a potential relationship between weight loss treatment, blood pressure and serum ghrelin concentrations in obese women. MATERIAL AND METHODS: A group of 37 obese premenopausal women with no previous history of hypertension (BMI: 36.5 +/- 5 kg/m2) were involved in the study. Blood pressure and serum ghrelin levels were assessed before and after a three-month weight reduction treatment, which consisted of a diet of 1000 kcal/day and physical exercise. Body composition was determined by impedance analysis using Bodystat. RESULTS: Following weight loss (mean 8.9 +/- 4.8 kg) SBP decreased (120 +/- 13 vs. 115 +/- 14 mm Hg, p = 0.01) and serum ghrelin levels increased significantly (66.9 +/- 13.7 vs. 73.9 +/- 15.4 pg/ml; p = 0.005). There were significant correlations between values for ghrelin levels after weight loss and SBP (r = -0.45, p = 0.02), DBP (r = -0.41, p < 0.05), and between Deltaghrelin levels and DeltaSBP (r = 0.52, p = 0.006), DeltaDBP (r = 0.53, p = 0.005). There was a positive correlation between an increase in ghrelin and a decrease in percentage body fat during weight loss (r = 0.51; p = 0.002). CONCLUSION: The results seem to provide evidence that weight loss may decrease blood pressure in obese patients via a ghrelin-dependent mechanism.  相似文献   

19.
The syndrome of cancer cachexia is accompanied by several alterations in lipid metabolism, and the liver is markedly affected. Previous studies showed that moderate exercise training may prevent liver fat accumulation through diminished delivery of lipids to the liver, increased hepatic oxidation and increased incorporation of triacylglycerol (TAG) into very low density lipoprotein (VLDL). Our aim was to examine the influence of moderate intensity training (8 weeks) upon TAG content, VLDL assembly and secretion, apolipoprotein B (apoB) and microsomal transfer protein (MTP) gene expression in the liver of cachectic tumour-bearing rats. Animals were randomly assigned to a sedentary control (SC), sedentary tumour-bearing (ST) or exercise-trained control (EC) or to an exercise trained tumour-bearing (ET) group. Trained rats ran on a treadmill (60% VO(2max)) for 60 min day(-1), 5 day week(-1), for 8 weeks. TAG content and the rate of VLDL secretion (followed for 3 h), as well as mRNA expression of apoB and MTP, and total cholesterol, VLDL-TAG, VLDL-cholesterol, high density lipoprotein cholesterol (HDL-cholesterol) and tumour weight were evaluated. VLDL-cholesterol showed a decrease in ST (p < 0.05) in relation to SC. Serum TAG, VLDL-TAG and tissue TAG content were all increased in ST (p < 0.01), when compared with SC. ST showed a lower rate of VLDL secretion (p < 0.05) and reduced expression of apoB (p < 0.001) and MTP (p < 0.001), when compared with SC. These parameters were restored to control values (p < 0.05) when the animals were submitted to the exercise training protocol. Tumour weight decreased 10-fold after training (p < 0.001). It is possible to affirm, therefore, that endurance training promoted the re-establishment of lipid metabolism in cachectic tumour-bearing animals, especially in relation to VLDL secretion and assembly.  相似文献   

20.
The objective of this study was to investigate the modulation of metabolic dysfunctions, adiponectin levels, and cardiac dysfunctions of type 2 diabetes mellitus (T2DM) by a combination of the insulin sensitizer rosiglitazone and angiotensin receptor blocker telmisartan in an experimental rat model. Fifty male adult Sprague-Dawley rats were divided equally into 5 groups. Group I: fed normal chow; served as normal control group. Groups II-V: fed a high-fat diet (HFD) for 2 weeks, followed by injection of streptozotocin (STZ; 35 mg/kg) to create a model of T2DM. Group II: treated with vehicle. Group III: treated with rosiglitazone (4 mg/kg). Group IV: treated with telmisartan (5 mg/kg). Group V: treated with both agents. Untreated HFD-STZ rats showed elevated fasting blood glucose, insulin, homeostasis model assessment (HOMA) index, triglycerides (TGs), low-density lipoprotein cholesterol (LDL), and total serum cholesterol (TC), with a decrease in high-density lipoprotein cholesterol (HDL) and adiponectin levels (p < 0.001). Rosiglitazone exerted more improvement in all parameters than telmisartan did, and a combination of both did not augment the improvement further, except for TGs and adiponectin. For the isolated atrial study, a combination of rosiglitazone and telmisartan corrected the responses of the atria of HFD-STZ rats to the negative inotropic effect induced by adenosine better than either one did alone, whereas this combination, surprisingly, significantly attenuated the positive inotropic response to β-adrenoreceptor and α-adrenoreceptor agonists. In conclusion, rosiglitazone significantly improved the metabolic and cardiac dysfunctions in T2DM. Moreover, a combination of rosiglitazone and telmisartan offered more improvement in serum TGs and adiponectin, and restored the atrial inotropic response to adenosine. Surprisingly, this combination significantly attenuates the positive inotropic response to α1-adrenoreceptor and β-adrenoreceptor agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号