首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in situ oxidation—reduction potentials of plastocyanin and cytochrome f have been measured in the same preparation of spinach chloroplasts using electron paramagnetic resonance spectroscopy and dual-wavelength absorbance spectroscopy, respectively. A midpoint potential of 340 mV (n = 1.0) at pH 7.8 was found for the bound plastocyanin and a value of 385 mV (n = 1.0) was found for the bound cytochrome f.  相似文献   

2.
Chemical modification of plastocyanin was carried out using ethylenediamine plus a water-soluble carbodiimide, which has the effect of replacing a negatively charged carboxylate group with a positively charged amino group at pH 6–8. The conditions were adjusted to produce a series of singly and doubly modified forms of plastocyanin. Differences in charge configuration allowed separation of these forms on a Pharmacia fast protein liquid chromatograph using a Mono Q anion exchange column. These forms were used to study the interaction of plastocyanin with its reaction partner cytochrome f. The rate of cytochrome f oxidation was progressively inhibited upon incorporation of increasing numbers of ethylenediamine moieties indicating a positively charged binding site on cytochrome f. However, differential inhibition was obtained for the various singly modified forms allowing mapping of the binding site on plastocyanin. The greatest inhibition was found for forms modified at negatively charged residues Nos. 42–45 and Nos. 59–61 which comprise a negative patch surrounding Tyr-83. In contrast, the form modified at residue No. 68, on the opposite side of the globular plastocyanin molecule, showed the least inhibition. It can be concluded that the binding site for cytochrome f is located in the vicinity of residues Nos. 42–45 and Nos. 59–61. Modification of plastocyanin at residues Nos. 42–45 showed no effect on the rate of P-700+ reduction, suggesting that these residues are not involved in the binding of Photosystem I. However, an increase in the rate of P-700+ reduction was observed for plastocyanins modified at residue No. 68 or Nos. 59–61, which is consistent with the idea that the reaction domain of Photosystem I is negatively charged and Photosystem I binds at the top of the molecule and accepts electrons via His-87 in plastocyanin. These results raise the possibility that plastocyanin can bind both cytochrome f and Photosystem I simultaneously. The effect of ethylenediamine modification on the formal potential of plastocyanin was also examined. The formal potential of control plastocyanin was found to be +372 ± 5 mV vs. normal hydrogen electrode at pH 7. All modified forms showed a positive shift in formal potential. Singly modified forms showed increases in formal potentials between +8 and +18 mV with the largest increases being observed for plastocyanins modified at residues Nos. 42–45 or Nos. 59–61.  相似文献   

3.
The reduction of P-700 by its electron donors shows two fast phases with half-times of 20 and 200 μs in isolated spinach chloroplasts. We have studied this electron transfer and the oxidation kinetics of cytochrome f.

Incubation of chloroplasts with KCN or HgCl2 decreased the amplitude of the 20 μs phase. This provides evidence for a function of plastocyanin as the immediate electron donor of P-700.

At low concentrations of salt and sugar the fast phases of P-700+ reduction were largely inhibited. Increasing concentrations of MgCl2, KCl and sorbitol (up to 5, 150 and 200 mM, respectively) were found to increase the relative amplitudes of the fast phases to about one-third of the total P-700 signal. Addition of both 3 mM MgCl2 and 200 mM sorbitol increased the relative amplitude of the 20 μs phase to 70%. The interaction between P-700 and plastocyanin is concluded to be favoured by a low internal volume of the thylakoids and compensation of surface charges of the membrane.

The half-time of 20 μs was not changed when the amplitude of this phase was altered either by salt and sorbitol, or by inhibition of plastocyanin. This is evidence for the existence of a complex between plastocyanin and P-700 with a lifetime long compared to the measuring time. The 200 μs phase exhibited changes in its half-time that indicated the participation of a more mobile pool of plastocyanin.

Cytochrome f was oxidized with a biphasic time course with half-times of 70–130 μs and 440–860 μs at different salt and sorbitol concentrations. The half-time of the faster phase and a short lag of 30–50 μs in the beginning of the kinetics indicate an oxidation of cytochrome f via the 20 μs electron transfer to P-700. An inhibition of this oxidation by MgCl2 suggests that the electron transfer from cytochrome f to complexed plastocyanin is not controlled by negative charges in contrast to that from plastocyanin to P-700.  相似文献   


4.
Plastocyanin is a copper protein found in photosynethetic tissue and it exhibits the properties of a physiological redox reagent. This protein has been purified from the blue-green alga Anabaena variabilis. Plastocyanin is required for a number of partial reactions of the photosynthetic electron transfer chain. These reactions include the transfer of electrons from reduced 2,3′,6-trichlorophenolindophenol,N,N,N′,N′- tetramethyl-p-phenylenediamine and 2,3,5,6-tetramethyl-p-phenylenediamine to low potential oxidants. Reduced cytochrome c photooxidation does not appear to be dependent on plastocyanin. Cytochrome f, isolated from this alga, will partially replace plastocyanin in many of these reations. Inhibition of photosynthetic reactions by copper chelators appears to occur at some site other than the site of plastocyanin function.  相似文献   

5.
Roy Powls  J. Wong  Norman I. Bishop 《BBA》1969,180(3):490-499
To investigate the possible alteration of various components of the photosynthetic electron transport system of certain mutants of Scenedesmus techniques were developed for their extraction and purification from whole cells of this alga. The components identified in the normal alga were cytochrome c 549, cytochrome b 562, a cytochrome c 551, flavoprotein-ferredoxin reductase, plastocyanin, cytochrome c 552, and ferredoxin. Lamellar-bound cytochrome c 552 and cytochromes b were also detected. Application of the extraction and purification techniques to two photosynthetic mutants revealed that Mutants 26 and 50 lacked cytochrome f in both the bound and soluble forms (Mutant 50) or in only the bound form (Mutant 26). Chloroplasts prepared from either of these mutants lacked Hill reaction activity with a variety of oxidants with water as the electron donor but photoreduced NADP+ with 2,6-dichlorophenolindophenol and ascorbate as the electron donor system. No photophosphorylation in vivo was detected with either mutant, but isolated chloroplasts performed a cyclic photophosphorylation with phenazine methosulphate as cofactor. Fluorescence analysis revealed that both mutants possess a measurable Photosystem II activity.

It was concluded that the loss of cytochrome f prevents the normal flow of electrons from Photosystem II to NADP and also to a variety of other Hill reaction oxidants. Furthermore, cytochrome f is not required for the reduction of NADP with electron donor systems other than water nor is it an essential component of the mechanism of cyclic photophosphorylation with phenazine methosulphate as cofactor.  相似文献   


6.
S. Izawa  R. Kraayenhof  E.K. Ruuge  D. Devault 《BBA》1973,314(3):328-339
Treatment of chloroplasts with high concentrations of KCN inhibits reactions which involve Photosystem I (e.g. electron transport from water or diaminodurene to methylviologen), but not those assumed to by-pass Photosystem I (e.g. electron transport from water to quinonediimides). The spectrophotometric experiments described in this paper showed that KCN inhibits the oxidation of cytochrome f by far-red light without blocking its reduction by red light. Both optical and EPR experiments indicated that KCN does not inhibit the photooxidation of P700 but markedly slows down the subsequent dark decay (reduction). Reduction of P700 by Photosystem II is prevented by KCN. It is concluded that KCN blocks electron transfer between cytochrome f and P700, i.e. the reaction step which is believed to be mediated by plastocyanin. In KCN-poisoned chloroplasts the slow dark reduction of P700 following photooxidation is greatly accelerated by reduced 2,6-dichlorophenolindophenol or by reduced N-methylphenazonium methosulfate (PMS), but not by diaminodurene. It appears that the reduced indophenol dye and reduced PMS are capable of donating electrons directly to P700, at least partially by-passing the KCN block.  相似文献   

7.
Chloroplast material active in photosynthetic electron transport has been isolated from Scenedesmus acutus (strain 270/3a). During homogenization, part of cytochrome 553 was solubilized, and part of it remained firmly bound to the membrane. A direct correlation between membrane cytochrome 553 and electron transport rates could not be found. Sonification removes plastocyanin, but leaves bound cytochrome 553 in the membrane. Photooxidation of the latter is dependent on added plastocyanin. In contrast to higher plant chloroplasts, added soluble cytochrome 553 was photooxidized by 707 nm light without plastocyanin present. Reduced plastocyanin or cytochrome 553 stimulated electron transport by Photosystem I when supplied together or separately. These reactions and cytochrome 553 photooxidation were not sensitive to preincubation of chloroplasts with KCN, indicating that both redox proteins can donate their electrons directly to the Photosystem I reaction center. Scenedesmus cytochrome 553 was about as active as plastocyanin from the same alga, whereas the corresponding protein from the alga Bumilleriopsis was without effect on electron transport rates.

It is suggested that besides the reaction sequence cytochrome 553 → plastocyanin → Photosystem I reaction center, a second pathway cytochrome 553 → Photosystem I reaction center may operate additionally.  相似文献   


8.
Wolfgang Haehnel 《BBA》1973,305(3):618-631
After preillumination with System I light spinach chloroplasts were excited by one flash or a group of saturating flashes. During the following dark period the time courses of the oxidation of plastohydroquinone and of the simultaneous reduction of oxidized cytochrome f and chlorophyll aI (P700) have been measured.

1. 1. From a correlation of these kinetics it can be concluded that at least 85% of the electrons from plastohydroquinone are transferred to chlorophyll aI.

2. 2. After one flash 93% of the oxidized chlorophyll aI is reduced. This suggests a high equilibrium constant between chlorophyll aI and its donor as well as an equilibration between different chlorophyll aI molecules.

3. 3. Cytochrome f is also reduced by plastohydroquinone. A ratio of active cytochrome f to chlorophyll aI of 0.4:1 is observed. The half-life time of the reduction of cytochrome f is 17 ms. The time course indicates that in the dark cytochrome f does not transfer electrons to chlorophyll aI and that no more than 15% of the electron transport passes cytochrome f. Therefore cytochrome f should be situated in a side path of the linear electron transport.

4. 4. The electrons which are released from plastohydroquinone and are not accepted by oxidized cytochrome f and chlorophyll aI have been calculated. From this difference properties of an electron carrier, as yet not identified, between plastoquinone and chlorophyll aI are predicted.

Abbreviations: Tricine; N-tris(hydroxymethyl)methylglycine  相似文献   


9.
Tetsuo Hiyama  Bacon Ke 《BBA》1971,226(2):320-327
Kinetics of the absorption change of P700 (blue band) and cytochrome f in whole cells of a blue-green alga, Plectonema boryanum, have been studied by Q-switched ruby-laser flash excitation (694 nm; approx. 20 nsec) to elucidate the sequential relationship of these two components in photosynthetic electron transport. “P700” was photooxidized within 2 μsec and recovered in two phases t1/2 10 μsec and 200 μsec). Under the same conditions cytochrome f was oxidized with a half time of 15 μsec. The magnitude of the fast phase of “P700” recovery, however, diminished at lower laser intensity while the cytochrome f change remained unaffected. The result suggests that cytochrome f and P700 may not be on the same electron-transport chain.  相似文献   

10.
P.Muir Wood 《BBA》1974,357(3):370-379
The rate of electron transfer between reduced cytochrome ƒ and plastocyanin (both purified from parsley) has been measured as k = 3.6 · 107 M−1 · s−1, at 298 °K and pH 7.0, with activation parameters ΔH = 44 kJ · mole−1 and ΔS = +46 J · mole−1 · °K−1. Replacement of cytochrome ƒ with red algal cytochrome c-553, Pseudomonas cytochrome c-551 and mammalian cytochrome c gave rates at least 30 times slower: k = 5 · 105, 7.5 · 105 and 1.0 · 106 M−1 · s−1, respectively.

Similar measurements made with azurin instead of plastocyanin gave k = 6 · 106 and approx. 2 · 107 M−1 · s−1 for reaction of reduced azurin with cytochrome ƒ and algal cytochrome respectively.

Rate constants of 115 and 80 M−1 · s−1 were found for reduction of plastocyanin by ascorbate and hydroquinone at 298 °K and pH 7.0. The rate constants for the oxidation of plastocyanin, cytochrome ƒ, Pseudomonas cytochrome c-551 and red algal cytochrome c-553 by ferricyanide were found to be between 3 · 104 and 8 · 104 M−1 · s−1.

The results are discussed in relation to photosynthetic electron transport.  相似文献   


11.
Rudolf E. Slovacek 《BBA》1982,680(3):361-365
Additions of ribose 5-phosphate to intact spinach chloroplasts were used to probe the effects of ADP regeneration on pH-gradient formation and electron-transfer reactions. In weakly illuminated chloroplasts, the ATP/ADP ratio dropped by 64% and the transthylakoid pH gradient decreased by a minimum of 0.2 units in response to ribose 5-phosphate. Nitrite reduction increased 2-fold while, under conditions of cyclic electron flow, the half-time for cytochrome f reduction decreased by a factor of two from 4.1 to 1.9 ms. The results suggest that metabolic ATP consumption, during the conversion of ribulose 5-phosphate to ribulose 1,5-bisphosphate, enhances electron transfer between plastohydroquinone and cytochrome f through decreases in the transthylakoid pH gradient caused by phosphorylation of ADP.  相似文献   

12.
1. The agranal bundle sheath chloroplasts of Sorghum bicolor possess very low Photosystem II activity compared with the grana-containing mesophyll chloroplasts.

2. Sorghum mesophyll chloroplasts have a chlorophyll (chl) and carotenoid composition similar to that of spinach chloroplasts. In contrast, the sorghum bundle sheath chloroplasts have a higher chl a/chl b ratio; they are enriched in β-carotene and contain relatively less xanthophylls as compared to sorghum mesophyll or spinach chloroplasts.

3. Sorghum mesophyll chloroplasts with 1 cytochrome f, 2 cytochrome b6 and 2 cytochrome b-559 per 430 chlorophylls have a cytochrome composition similar to spinach chloroplasts. Sorghum bundle sheath chloroplasts contain cytochrome f and cytochrome b6 in the same molar ratios as for the mesophyll chloroplasts, but cytochrome b-559 is barely detectable.

4. The chl/P700 ratios of mesophyll chloroplasts of S. bicolor and mesophyll and bundle sheath chloroplasts of Atriplex spongiosa are similar to that of spinach chloroplasts suggesting that these chloroplasts possess an identical photosynthetic unit size to that of spinach. The agranal bundle sheath chloroplasts of S. bicolor possess a photosynthetic unit which contains only about half as many chlorophyll molecules per P700 as found in the grana-containing chloroplasts.

5. The similarity of the composition of the bundle sheath chloroplasts of S. bicolor with that of the Photosystem I subchloroplast fragments, together with their smaller photosynthetic unit and low Photosystem II activities suggests that these chloroplasts are highly deficient in the pigment assemblies of Photosystem II.  相似文献   


13.
Steven P. Berg  S. Izawa 《BBA》1976,440(3):483-494
Salicylaldoxime has been found to have a variety of concentration-dependent effects on chloroplast activities. At low concentrations (< 10 mM), salicylaldoxime reversibly inhibits all reactions which involve Photosystem II. Since the DCMU-insensitive silicomolybdate Hill reaction is also inhibited, one site of inhibition is definitely located before the DCMU-sensitive site, possibly before the photoact. The inhibition kinetics and the response of chloroplast fluorescence may indicate another site in the DCMU-sensitive region. At almost exactly the same concentrations (< 10 mM), salicylaldoxime uncouples phosphorylation reversibly, whether it is supported by Photosystem II or by Photosystem I. At higher concentrations (approx. 20 mM) salicylaldoxime inhibits Photosystem II irreversibly, uncouples irreversibly, and begins to cause changes in chloroplast light scattering which could be manifestations of membrane damage. At very high concentrations (approx. 45 mM) salicylaldoxime irreversibly inhibits Photosystem I activity in the region of plastocyanin. This is indicated by the ability of salicylaldoxime to inhibit the photooxidation of cytochrome f but not the photooxidation of P-700.  相似文献   

14.
Plastocyanin and cytochrome c6 from the green alga Scenedesmus vacuolatus were immunoquantified in cells grown under different concentrations of copper and iron. Plastocyanin expression was constitutive, its synthesis was not significantly affected by iron availability, and increases with copper availability. On the contrary, cytochrome c6 synthesis is repressed by copper, and only residual amounts of the protein were detected at 0.1 μmol/L copper. Under copper deficiency, cytochrome c6 is slightly dependent on iron. In natural environments, plastocyanin seems to be the predominant electron donor to P700.  相似文献   

15.
Scott Power  Graham Palmer 《BBA》1980,593(2):400-413
We have prepared and characterized resealed erythrocyte ghosts in which the only discernible pigment is cytochrome c. The resealed ghosts have the normal orientation and are free of ‘leaky’ species; they are stable and can be maintained at 4°C for many days without lysis.

The internal cytochrome c participates in redox reactions with both soluble and insolubilized cytochrome c present externally, and with external cytochrome b5. No reaction was observed with plastocyanin, cytochrome c oxidase or NADPH-cytochrome c reductase.

A study has been made of the reaction of the internal cytochrome c with the low molecular weight reductants, ascorbate and glutathione. Complex kinetics are observed with both reagents: with ascorbate the results are best explained by assuming the existence, in the membrane, of a redox-active species able to undergo dedimerization. A protein bound disulfide bond would satisfy the requirement.  相似文献   


16.
1. Light-induced absorbance changes of cytochrome b-559 and cytochrome f in the -band region were examined in leaves and in isolated chloroplasts.

2. Absorbance changes of cytochrome b-559 were not detected in untreated leaves or in most preparations of isolated chloroplasts. After treatment of leaves or chloroplasts with carbonyl cyanide m-chlorophenylhydrazone, high rates of photooxidation of cytochrome b-559 were obtained, both in far-red (>700 nm) and red actinic light. Cytochrome f was photooxidized in far-red light, but in red light it remained mainly in the reduced state. The initial rates of photooxidation of cytochrome b-559 in leaves or chloroplasts treated with carbonyl cyanide m-chlorophenylhydrazone were considerably decreased by 3-(3′,4′-dichlorophenyl)-1,1-dimethyl urea.

3. A slow photoreduction of cytochrome b-559 was observed in aged mutant pea chloroplasts in red light.

4. The results do not support the view that cytochrome b-559 is a component of the electron transport chain between the light reactions. It is suggested that cytochrome b-559 is located on a side path from Photosystem II, but with a possible additional link to Photosystem I.  相似文献   


17.
The spectroscopic measurements of the slow phase of the electrochromic effect and the redox kinetics of cytochrome b6 and f provide strong evidence that a Q cycle operates in chloroplasts under conditions of non-cyclic electron transport. The effect of HQNO and DBMIB on the extent and kinetics of these light-induced changes places several constraints on the mechanism of quinol oxidation by the cyt. b/f—FeS complex: for each electron removed from the cyt. b/f—FeS complex by P700 an additional charge is transferred across the membrane; the cyclic pathway of electrons involved in quinol oxidation by the cyt. b/f—FeS complex includes at least one of the two b6 cytochromes; the electrogenic step associated with quinol oxidation is subsequent to the reduction of at least one cytochrome b6 quinol oxidation may proceed in a stepwise manner, with the first electron going to cytochrome b6 and the second electron going to the FeS center and cytochrome f.  相似文献   

18.
M H Kim  R R Neubig 《FEBS letters》1985,180(2):321-325
The isolation of a cytochrome b6-f complex from spinach, which is depleted of plastoquinone (and lipid), is reported. The depleted complex no longer functions as a plastoquinol-plastocyanin oxidoreductase but can be reconstituted with plastoquinone and exogenous lipids. The lipid classes digalactosyldiacylglycerol, phosphatidylglycerol and phosphatidylcholine were active in reconstitution while monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol were not. Neither plastoquinone nor lipid alone fully reconstitutes electron transport in the depleted complex. Saturation of plastoquinol-plastocyanin oxidoreductase activity in the depleted complex occurs at 1 plastoquinone per cytochrome f.  相似文献   

19.
G. Hauska  A. Trebst  W. Draber 《BBA》1973,305(3):632-641
The topography of the chloroplast membrane has been studied using the following pairs of quinoid compounds with similar structure and chemical properties, but with different lipid solubility: phenazine/sulfophenazine, naphthoquinone/naphthoquinone sulfonate, indophenol/sulfoindophenol and lumiflavin/FMN.

All these compounds in the oxidized form are able to accept electrons from the photosynthetic electron transport chain in Hill reactions. However, only the lipophilic compounds in the reduced form can donate electrons to Photosystem I, when electron flow from Photosystem II is blocked by inhibitors. This is in agreement with the notation that the oxidizing site of Photosystem I (P700+) and the electron donors for Photosystem I (cytochrome f and plastocyanin) are located inside the lipid barrier of the inner chloroplast membrane. The reducing sites in the Hill reactions must be located on the outer surface, accessible from the suspending medium.

It has been known for a long time that N,N′-tetramethyl-p-phenylenediamine can donate electrons to Photosystem I, but contrary to diaminodurene (2,3,5,6-tetramethyl phenylenediamine) it does not induce ATP formation. Both compounds are lipophilic and have similar redox potentials, but only the latter carries hydrogens which are involved in the redox reaction. For energy conservation, coupled to electon flow in Photosystem I, it therefore seems necessary that the lipophilic redox compound in the reduced form can carry hydrogens through the chloroplast membrane.  相似文献   


20.
Plastocyanin cytochrome f interaction   总被引:2,自引:0,他引:2  
Spinach plastocyanin and turnip cytochrome f have been covalently linked by using a water-soluble carbodiimide to yield an adduct of the two proteins. The redox potential of cytochrome f in the adduct was shifted by -20 mV relative to that of free cytochrome f, while the redox potential of plastocyanin in the adduct was the same as that of free plastocyanin. Solvent perturbation studies showed the degree of heme exposure in the adduct to be less than in free cytochrome f, indicating that plastocyanin was linked in such a way as to bury the exposed heme edge. Small changes were also observed when the resonance Raman spectrum of the adduct was compared to that of free cytochrome f. The adduct was incapable of interacting with or donating electrons to photosystem I. Peptide mapping and sequencing studies revealed two sites of linkage between the two proteins. In one site of linkage, Asp-44 of plastocyanin is covalently linked to Lys-187 of cytochrome f. This represents the first identification of a group on cytochrome f that is involved in the interaction with plastocyanin. The other site of linkage involves Glu-59 and/or Glu-60 of plastocyanin to as yet unidentified amino groups on cytochrome f. Euglena cytochrome c-552 could also be covalently linked to turnip cytochrome f, although with a lower efficiency than spinach plastocyanin. In contrast, a variety of cyanobacterial cytochrome c-553's and a cyanobacterial plastocyanin could not be covalently linked to turnip cytochrome f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号