首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used purified proteolytic fragments of von Willebrand factor (vWF) to characterize three related functional sites of the molecule that support interaction with platelet glycoprotein Ib, collagen, and heparin. A fragment of 116 kDa was found to be dimeric and consisted of disulfide-linked subunits which, after reduction and alkylation, corresponded to the previously described 52/48-kDa fragment extending from residue 449 to 728. Fragment III-T2, also a dimer, was composed of two pairs of disulfide-linked subunits, two 35-kDa heavy chains (residues 273-511) and two 10-kDa light chains (residues 674-728). The 116-kDa fragment, but not the constituent 52/48-kDa subunit, supported ristocetin-induced platelet aggregation and retained 20% (on a molar basis) of the ristocetin cofactor activity of native vWF; fragment III-T2 retained less than 5% activity. All three fragments, however, inhibited vWF interaction with glycoprotein Ib. Both 116-kDa and 52/48-kDa fragments inhibited vWF binding to heparin with similar potency, while fragment III-T2 had no effect in this regard. Only the 116-kDa fragment inhibited vWF binding to collagen. These results indicate that dimeric fragments containing two glycoprotein Ib-binding sites possess the minimal valency sufficient to support ristocetin-induced aggregation. The sequence comprising residues 512-673, missing in fragment III-T2, is necessary for binding to heparin and collagen and may be crucial for anchoring vWF to the subendothelium. Immunochemical and functional data suggest that the same sequence, although not essential for interaction with glycoprotein Ib, may influence the activity of the glycoprotein Ib-binding site. Only binding to collagen has absolute requirement for intact disulfide bonds. Thus, the three functional sites contained in the 116-kDa domain of vWF are structurally distinct.  相似文献   

2.
We have used proteolytic fragments and overlapping synthetic peptides to define the domain of von Willebrand factor (vWF) that forms a complex with botrocetin and modulates binding to platelet glycoprotein (GP) Ib. Both functions were inhibited by the dimeric 116-kDa tryptic fragment and by its constituent 52/48-kDa subunit, comprising residues 449-728 of mature vWF, but not by the dimeric fragment III-T2 which lacks amino acid residues 512-673. Three synthetic peptides, representing discrete discontinuous sequences within the region lacking in fragment III-T2, inhibited vWF-botrocetin complex formation; they corresponded to residues 539-553, 569-583, and 629-643. The 116-kDa domain, with intact disulfide bonds, exhibited greater affinity for botrocetin than did the reduced and alkylated 52/48-kDa molecule, and both fragments had significantly greater affinity than any of the inhibitory peptides. Thus, conformational attributes, though not strictly required for the interaction, contribute to the optimal functional assembly of the botrocetin-binding site. Accordingly, 125I-labeled botrocetin bound to vWF and to the 116-kDa fragment immobilized onto nitrocellulose but not to equivalent amounts of the reduced and alkylated 52/48-kDa fragment; it also bound to the peptide 539-553, but only when the peptide was immobilized onto nitrocellulose at a much greater concentration than vWF or the proteolytic fragments. These studies demonstrate that vWF interaction with GP Ib may be modulated by botrocetin binding to a discontinuous site located within residues 539-643. The finding that single point mutations in Type IIB von Willebrand disease are located in the same region of the molecule supports the concept that this domain may contain regulatory elements that modulate vWF affinity for platelets at sites of vascular injury.  相似文献   

3.
Several proteins from bovine platelet lysate bound to type I collagen immobilized to the beads of formyl derivatives of cellulose. Among these proteins, a protein of about 100,000 daltons was purified to homogeneity by two additional affinity chromatographies, an organomercurial-agarose and a lentil lectin-agarose. This protein consisted of a single polypeptide chain which contains carbohydrate moiety and many intrapolypeptide disulfide bridges. In addition to platelets, this protein was present in plasma and cultured endothelial cells but not in red blood cells, leukocytes, and smooth muscle cells. Furthermore, it was released from platelets upon stimulation by various agonists. The purified 100-kDa protein was labeled with 125I to quantitate its binding to fibrillar type I collagen. The protein specifically bound to fibrillar collagen with the apparent dissociation constant of 5.6 x 10(-8) M for the high affinity site and 5.5 x 10(-7) M for the low affinity site. Analyses of amino acid sequences of both intact and tryptic fragments of this protein revealed that it had strong homology to the propolypeptide of human von Willebrand factor, which is also known as von Willebrand antigen II. Various properties of this protein listed above also strongly suggest that it was indeed the propolypeptide of bovine von Willebrand factor.  相似文献   

4.
We have purified a reduced and alkylated tryptic fragment of von Willebrand factor (vWF) which migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a 52/48-kDa doublet, but behaved as a single 46-kDa species after partial deglycosylation. After extensive treatment with denaturants, the 52/48-kDa polypeptide retained its ability to inhibit ristocetin-induced platelet aggregation in the presence of native vWF, as well as aggregation induced by desialylated vWF alone. Therefore, the 52/48-kDa polypeptide interacts with the platelet glycoprotein Ib receptor even in the absence of ristocetin. Both the 52/48- and the 46-kDa species inhibited ristocetin-induced binding of the intact molecule to platelets, but did not affect thrombin-induced binding. Determination of the NH2-terminal sequence of both members of the doublet gave identical results: VTLNPSDPEHCQ. This provided additional evidence that differences between the doublet constituents were only of carbohydrate composition and established the position of this peptide within the vWF polypeptide chain of approximately 2050 amino acid residues as beginning with the residue tentatively designated 449. These studies suggest that native conformation is not necessary for binding of vWF to platelets at the glycoprotein Ib receptor and that a linear amino acid sequence following residue 449 defines a domain responsible for this interaction.  相似文献   

5.
J Takagi  H Asai  Y Saito 《Biochemistry》1992,31(36):8530-8534
Propolypeptide of von Willebrand factor (pp-vWF) binds to type I collagen, and we have reported that a binding domain exists in a 21.5/21-kDa fragment originated from the C-terminal portion [Takagi, J., Fujisawa, T., Sekiya, F., & Saito, Y. (1991) J. Biol. Chem. 266, 5575-5579]. The collagen-binding property of the 21.5/21-kDa fragment was compared with that of the intact pp-vWF. Although pp-v WF preferentially binds to native type I collagen fibrils, the isolated fragment no longer has this specificity and binds well to collagen of other types in the native and heat-denatured states. In order to determine the critical site that mediates this collagen/gelatin binding, several peptides were synthesized based on the primary structure of the 21.5/21-kDa fragment. Among these, a 25-residue peptide strongly inhibited the binding of the 125I-labeled 21.5/21-kDa fragment to collagen. Using this inhibitory effect as an index, the binding site was defined to the sequence as follows: WREPSFCALS. Furthermore, a decapeptide of this sequence bound to collagen and gelatin, indicating that this sequence is responsible for the binding of the 21.5/21-kDa fragment to collagen/gelatin.  相似文献   

6.
The glycoprotein Ib (GPIb), a two-chain integral platelet membrane protein, acts as a receptor for von Willebrand factor. In order to obtain information on the domain involved in this function, as well as on the structural organization of GPIb, the protein has been purified and submitted to limited proteolysis using three different enzymes. The resulting fragments were topographically oriented by means of partial NH2-terminal sequence analysis and immunological identification using monoclonal antibodies. One of these antibodies (LJ-Ib1) inhibited the von Willebrand factor-GPIb interaction completely, one (LJ-P3) partially, and one (LJ-Ib10) had no inhibitory effect. Three distinct fragments, the 38-kDa fragment produced by Serratia marcescens protease as well as the 45- and 35-kDa fragments produced by trypsin, had the same NH2 terminus as the intact GPIb alpha-chain (apparent molecular mass = 140 kDa). These fragments and the alpha-chain reacted with the inhibitory antibodies. On the other hand, three fragments produced by Staphylococcus aureus V8 protease, one of 92 kDa similar to the previously described "macroglycopeptide" and two others of 52 and 45 kDa, had NH2-terminal sequences different from that of the GPIb alpha-chain and reacted only with the noninhibitor monoclonal antibody LJIb10. Thus, the binding domain for von Willebrand factor resides near the NH2 terminus of the GPIb alpha-chain, whereas the carbohydrate-rich region is part of the innermost portion of GPIb and does not appear to be involved in the von Willebrand factor binding function.  相似文献   

7.
Proteolytic studies on the structure of bovine von Willebrand factor   总被引:1,自引:0,他引:1  
M A Mascelli  E P Kirby 《Biochemistry》1988,27(4):1274-1284
Bovine von Willebrand factor (vWF) was digested with protease I (P-I), a metalloprotease isolated from rattlesnake venom. Digestion of vWF for 24 h with P-I yielded a terminal digest consisting of an equimolar mixture of two major fragments (apparent Mr 250K and 200K). The 250-kilodalton (kDa) fragment consists of a 125-kDa chain from one subunit and a 45- and 78-kDa polypeptide chain from an adjacent subunit. The 200-kDa fragment consists of a 97-kDa chain from one subunit and a 35- and 61-kDa polypeptide chain from an adjacent subunit. The 200-kDa fragment binds to heparin, and the heparin binding domain is located on the 97-kDa polypeptide chain. This fragment also competes with labeled, native vWF for binding to formalin-fixed human platelets, with an IC50 of 12.5 micrograms/mL (65 nM). However, native vWF has an IC50 of 2.5 micrograms/mL, indicating that the affinity of the 200-kDa fragment for platelets is approximately one-fifth that of vWF. The 200-kDa fragment agglutinates platelets, but its agglutinating ability is only 5% that of the native molecule. Only the 200-kDa fragment is recognized by monoclonal antibodies 2 and H-9, which are directed against vWF and inhibit vWF binding to platelet glycoprotein Ib (GPIb). Immunological studies, using nine monoclonal antibodies directed against vWF, and the demonstration that the heparin and GPIb binding domains are located on only one fragment suggest that the two fragments are composed of different regions of the vWF subunit. Analysis of the P-I cleavage pattern suggests that all vWF subunits are not cleaved in the same fashion. The first cleavage on half of the subunits generates the 45-kDa terminal and 175-kDa intermediate digest products. The 175-kDa chain is again cleaved, producing the 97- and 78-kDa terminal polypeptide chains. However, the first cleavage of the other subunits generates the 35-kDa terminal and the 186-kDa intermediate digest product, which upon cleavage produces the 125- and 61-kDa terminal polypeptide chains. Immunological data support the asymmetric cleavage pattern. An epitope for a monoclonal antibody is present on both the 186- and 175-kDa intermediate digest products but is only found on one terminal digest fragment, the 78-kDa polypeptide chain, suggesting that the 186- and 175-kDa polypeptides are cleaved at different sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Two reduced/alkylated fragments of bovine propolypeptide of von Willebrand factor (pp-vWF) that inhibit pp-vWF binding to collagen were isolated. One is a tryptic fragment of molecular mass of about 30 kDa and inhibits the binding at a molar concentration about 20 times higher than the intact pp-vWF. Amino acid sequence of this fragment was determined almost completely, and it was revealed that this fragment corresponded to the carboxyl-terminal region of pp-vWF molecule beginning with Phe557. The other active fragment was obtained by lysyl endopeptidase digestion. This migrated as a 21.5/21-kDa doublet in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but deglycosylation of this doublet resulted in production of single species of 19 kDa. The difference between the doublet constituents, therefore, was of carbohydrate composition. The extent of inhibition of collagen-binding by this 21.5/21-kDa fragment was comparable to that of the 30-kDa fragment, and furthermore, location of this fragment in the molecule was established to be between Phe570 and Lys682. These were the only fragments among those obtained by proteolytic digestions that had significant competitive effect on the binding of intact pp-vWF to collagen. These results strongly suggest that at least one collagen-binding site should be present in the carboxyl-terminal region of bovine pp-vWF extending from residue 570 to 682.  相似文献   

9.
We have identified four discrete proteolytic fragments of von Willebrand factor (vWF) that define two collagen-binding domains. Two of the fragments tested, T 96 kDa and T 55 kDa, were generated by digestion with trypsin, and two, Fragments I and III, with Staphylococcus aureus V8 protease. The larger Fragment III, a disulfide-linked homodimer, extends between residues 1 and 1365 of the 2050-residue vWF subunit and comprises the sequence of all the others. T 96 kDa, also a disulfide-linked homodimer, extends between residues 449 and 728. T 55 kDa and Fragment I, both single-chain polypeptides, have a partial sequence overlap corresponding to residues 911-1114, and together extend from residue 730 to 1365. The ability of the fragments to interfere with the vWF-collagen interaction was evaluated by measuring inhibition of 125I-labeled vWF binding to fibrillar bovine collagen types I and III. All the four fragments tested inhibited binding. Native conformation was essential for expression of this function; denaturation with guanidine hydrochloride and reduction of disulfide bonds resulted in marked reduction or complete loss, respectively, of the inhibitory activity at all the concentrations tested. Two monoclonal antibodies were prepared, one directed against T 96 kDa and the other against Fragment I. Both antibodies partially inhibited vWF binding to collagen, and their inhibitory effect was enhanced when they were used together. 125I-Labeled Fragment I bound to collagen in a saturable manner, and the binding was completely blocked by both T 96 kDa and T 55 kDa. Thus, we have identified at least two distinct functional domains of vWF that concurrently mediate the vWF-collagen interaction. The two domains appear to share a common recognition site on collagen.  相似文献   

10.
Bovine von Willebrand factor was digested with human plasmin in order to isolate and characterize a fragment that can bind to human platelets. A terminal plasmin digest of bovine von Willebrand factor is composed of five fragments, ranging in relative molecular weight (Mr) from 250,000 to 35,000. The major fragment has a Mr of 250,000 and consists of four disulfide-linked polypeptide chains with Mr from 69,000 to 35,000. The Mr 69,000 and 49,000 polypeptides possess carbohydrate moieties, as indicated by their reaction with periodate-Schiff reagent. Gel filtration studies suggest that, at physiological ionic strength, four of the Mr 250,000 fragments associate into a limited noncovalent oligomer. Monoclonal antibodies were prepared against native von Willebrand factor and used to characterize the distribution of epitopes on native vWF and the Mr 250,000 major fragment. Two of the monoclonal antibodies that recognize the major fragment (2 and H-9) inhibit platelet agglutination. The Mr 250,000 fragment binds to human platelets, and the binding is inhibited by monoclonal antibodies 2 and H-9. The Mr 250,000 fragment does not agglutinate platelets, consistent with a requirement for high molecular weight oligomers of von Willebrand factor for platelet agglutination. The Mr 250,000 fragment can compete with intact, bovine von Willebrand factor for binding to human platelets. However, its affinity is one-tenth that of intact von Willebrand factor.  相似文献   

11.
Recently we have found that propolypeptide of von Willebrand factor (pp-vWF) obtained from platelets binds to type I collagen. It is known that pp-vWF is present in platelet alpha-granules and is secreted upon activation. In this paper, we demonstrate the two following evidences to show that it is also present on the surface of resting platelets. [1] The antibody against pp-vWF bound to the surface of platelets. [2] The antibody induced aggregation of platelets. The binding of the antibody and the antibody-induced aggregation of platelets were inhibited in a dose-dependent manner by Fab fragment of the antibody. Platelets from von Willebrand disease patients bound less of the antibody and responded weakly to the antibody.  相似文献   

12.
ATP binding properties of the nucleotide-binding folds of SUR1   总被引:8,自引:0,他引:8  
Pancreatic beta cell ATP-sensitive potassium (K(ATP)) channels regulate glucose-induced insulin secretion. The activity of the K(ATP) channel, composed of SUR1 and Kir6.2 subunits, is regulated by intracellular ATP and ADP, but the molecular mechanism is not clear. To distinguish the ATP binding properties of the two nucleotide-binding folds (NBFs) of SUR1, we prepared antibodies against NBF1 and NBF2, and the tryptic fragment of SUR1 was immunoprecipitated after photoaffinity labeling with 8-azido-[(32)P]ATP. The 35-kDa fragment was strongly labeled with 5 microM 8-azido-[(32)P]ATP even in the absence of Mg(2+) and was immunoprecipitated with the antibody against NBF1. The 65-kDa fragment labeled with 100 microM 8-azido-[alpha-(32)P]ATP in the presence of Mg(2+) was immunoprecipitated with anti-NBF2 and anti-C terminus antibodies. These results indicate that NBF1 of SUR1 binds 8-azido-ATP strongly in a magnesium-independent manner and that NBF2 binds 8-azido-ATP weakly in a magnesium-dependent manner. Furthermore, the 65-kDa tryptic fragment was not photoaffinity-labeled with 8-azido-[gamma-(32)P]ATP at 37 degrees C, whereas the 35-kDa tryptic fragment was, suggesting that NBF2 of SUR1 may have ATPase activity and that NBF1 has none or little.  相似文献   

13.
A 39/34-kilodalton (kDa) monomeric dispase fragment of von Willebrand factor (vWF) has been purified by heparin affinity chromatography. Detailed structural analysis of the individual 39- and 34-kDa fragments indicated that they had identical amino acid sequences extending from Leu-480/Val-481 to Gly-718 with an intramolecular disulfide bond between Cys-509 and Cys-695. In addition to the binding site for heparin, the 39/34-kDa fragment also contained binding sites for collagen and for platelet membrane glycoprotein (GP) Ib. Unlike native vWF, the 39/34-kDa fragment bound to GP Ib without the requirement for a modulator but showed increased binding in the presence of botrocetin. The 39/34-kDa vWF fragment was cross-linked to intact human platelets by using the membrane-impermeable, homobifunctional cross-linking reagent bis(sulfosuccinimidyl) suberate. Two distinct cross-linked species of similar molecular weight (220/200 kDa, nonreduced; 190/175 kDa, reduced) were identified by SDS-polyacrylamide gel electrophoresis and autoradiography, consistent with the cross-linking of the 125I-labeled 39/34-kDa vWF fragment to GP Ib. The formation of these cross-linked species was enhanced 1.5-2.5-fold in the presence of the modulator botrocetin. The platelet membrane protein involved in cross-linking was shown unequivocally to be GP Ib since (i) neither cross-linked species was formed with Bernard-Soulier syndrome platelets, which genetically lack the GP Ib-IX complex, (ii) both cross-linked species were specifically immunoprecipitated by anti-GP Ib polyclonal and monoclonal antibodies, and (iii) the formation of the cross-linked species was completely inhibited only by those anti-GP Ib-IX complex monoclonal antibodies that inhibited vWF-GP Ib-IX complex interaction. Proteolysis of cross-linked platelets with endoproteinase Lys-C, which preferentially cleaves off the N-terminal peptide domain on the alpha-chain of GP Ib, indicated that the 39/34-kDa vWF fragment was cross-linked exclusively to this region of the GP Ib-IX complex.  相似文献   

14.
Five independent hybrids producing monoclonal antibodies to human plasma fibronectin have been obtained by fusing P3/X63-Ag8 myeloma cells with immune mouse splenocytes. The specificity of these monoclonal antibodies (MABs) for fibronectin was demonstrated by three independent tests: binding to the purified soluble molecule, immunofluorescence staining of insoluble extracellular matrices produced by endothelial cells in vitro, immunostaining of fibronectin tryptic peptides after separation on SDS-PAGE and transfer to nitrocellulose sheets. Two antibodies (MAB 29 and 52) recognized selectively human fibronectin while the others (MAB 5, 30 and 59) reacted also with plasma fibronectin from calf, hamster and chicken. Four distinct epitopes were recognized by the MABs studied. MAB 5, 30, 52 and 59 reacted with distinct antigenic sites, while MAB 29 and 52 bind to the same site. Antigenic fragments were identified by immunostaining of fibronectin tryptic peptides. MAB 5 reacted with a collagen binding fragment with a molecular weight of 120 K. In addition, each of the MAB 29, 30, 52 and 59 reacted with peptides with a molecular weight of 40 K that bind to gelatin. Since these antibodies do not inhibit fibronectin-collagen interaction, it is concluded that their corresponding epitopes are clustered in a region close, but not coincident, to the collagen binding site of fibronectin.  相似文献   

15.
In the present report we describe the isolation of a functional domain of platelet membrane glycoprotein (GP) Ib which retains von Willebrand factor (vWF)-binding activity. Glycocalicin, a proteolytic fragment of the alpha-chain of GP Ib generated by an endogenous calcium-activated protease, was submitted to digestion with trypsin. The two resulting fragments, one of 45 kDa extending between residues His1 and Arg293 and representing the amino terminus of the alpha-chain, the other of 84 kDa corresponding to the previously described macroglycopeptide, were purified to homogeneity. Glycocalicin, as well as the 45- and 84-kDa fragments, inhibited the ristocetin-dependent binding of native vWF to platelet GP Ib. The concentration inhibiting 50% of binding (IC50) was between 1 and 5 microM with all these molecules. In contrast, the binding of asialo-vWF to platelet GP Ib, measured directly in the absence of ristocetin, was blocked by glycocalicin and the 45-kDa fragment with a similar IC50, but not by the 84-kDa fragment. Both glycocalicin and the 45-kDa fragment bound to purified surface-bound vWF in a ristocetin-dependent manner and with similar affinities. Monoclonal antibodies against vWF or GP Ib inhibited this interaction in a way consistent with their inhibition of vWF binding to platelet GP Ib. These studies demonstrate that the amino-terminal extracytoplasmic region of the alpha-chain, extending between residues 1 and 293, contains a functional domain that interacts with vWF in the absence of any other structure of the GP Ib complex or any other platelet membrane component. Whereas the ristocetin-dependent binding of vWF may involve also other domains in the macroglycopeptide region, the direct vWF-GP Ib interaction appears to be mediated only by a domain in the amino-terminal region of GP Ib alpha.  相似文献   

16.
Platelet membrane glycoprotein Ib plays a major role in the binding of factor VIII/von Willebrand factor to allow platelet adhesion to subendothelium. We have used polyspecific and monoclonal antibodies to glycoprotein Ib and have demonstrated that both antibodies were directed to glycoprotein Is, a soluble fragment of glycoprotein Ib. By showing an inhibition of the binding of factor VIII/von Willebrand factor to control platelets in presence of the antibodies, it can be concluded that glycoprotein Is is involved in these binding sites.  相似文献   

17.
Subendothelial collagen plays an important role, via both direct and indirect mechanisms, in the initiation of thrombus formation at sites of vascular injury. Collagen binds plasma von Willebrand factor, which mediates platelet recruitment to collagen under high shear. Subsequently, the direct binding of the platelet receptors glycoprotein VI and alpha2beta1 to collagen is critical for platelet activation and stable adhesion. Leeches, have evolved a number of inhibitors directed towards platelet-collagen interactions so as to prevent hemostasis in the host during hematophagy. In this article, we describe the molecular mechanisms underlying the ability of the leech product saratin to inhibit platelet binding to collagen. In the presence of inhibitors of ADP and thromboxane A2, both saratin and 6F1, a blocking alpha2beta1 mAb, abrogated platelet adhesion to fibrillar and soluble collagen. Additionally, saratin eliminated alpha2beta1-dependent platelet adhesion to soluble collagen in the presence of an Src kinase inhibitor. Moreover, saratin prevented platelet-rich plasma adhesion to fibrillar collagen, a process dependent upon both alpha2beta1 and von Willebrand factor binding to collagen. Furthermore, saratin specifically inhibited the binding of the alpha2 integrin subunit I domain to collagen, and prevented platelet adhesion to collagen under flow to the same extent as observed in the presence of a combination of mAbs to glycoprotein Ib and alpha2beta1. These results demonstrate that saratin interferes with integrin alpha2beta1 binding to collagen in addition to inhibiting von Willebrand factor-collagen binding, presumably by binding to an overlapping epitope on collagen. This has significant implications for the use of saratin as a tool to inhibit platelet-collagen interactions.  相似文献   

18.
We have identified a Factor VIII (FVIII) binding domain residing within the amino-terminal 272 amino acid residues of the mature von Willebrand Factor (vWF) subunit. Two-dimensional crossed immunoelectrophoresis showed direct binding of purified human FVIII to purified human vWF. After proteolytic digestion of vWF with Staphylococcus aureus V8 protease (SP), FVIII binding was seen only with the amino-terminal SP fragment III and not with the carboxyl-terminal SP fragment II. A monoclonal anti-vWF antibody (C3) partially blocked FVIII binding to vWF and SP fragment III. FVIII also bound to vWF which had been adsorbed to polystyrene beads. This binding was inhibited in a dose-dependent manner by whole vWF, SP fragment III, and by monoclonal antibody C3. Binding could not be inhibited by SP fragment I, which contains the middle portion of the vWF molecule, or by reduced and alkylated whole vWF. SP fragment II caused only minimal inhibition. Trypsin cleavage of SP fragment III produced a monomeric 35-kDa fragment containing the amino-terminal 272 amino acid residues of vWF. This fragment reacted with monoclonal antibody C3 and inhibited the binding of FVIII to vWF in a dose-dependent manner. These studies demonstrate that a major FVIII binding site resides within the amino-terminal 272 amino acid residues of vWF.  相似文献   

19.
ADAMTS13, a metalloprotease, cleaves von Willebrand factor (VWF) in plasma to generate smaller, less thrombogenic fragments. The interaction of von Willebrand factor with specific ADAMTS13 domains was characterized with a binding assay employing von Willebrand factor immobilized on a plastic surface. ADAMTS13 binding was saturable and reversible. Equilibrium binding occurred within 2 h and the half-time for dissociation was approximately 4 h. Binding to von Willebrand factor was similar with either recombinant ADAMTS13 or normal plasma ADAMTS13; plasma from a patient who lacked ADAMTS13 activity showed no binding. The stoichiometry of binding was one ADAMTS13 per two von Willebrand factor monomers, and the K(d) was 14 nm. The ADAMTS13 metalloprotease and disintegrin domains did not bind VWF detectably. ADAMTS13 truncated after the first thrombospondin type 1 repeat bound VWF with a K(d) of 206 nm, whereas ADAMTS13 truncated after the spacer domain had a K(d) of 23 nm, which is comparable with that of full-length ADAMTS13. Truncation after the eighth thrombospondin type 1 repeat reduced the binding affinity by approximately 3-fold and truncation after the seventh thrombospondin type 1 repeat in addition to the CUB domains increased the affinity for von Willebrand factor by approximately 2-fold. Therefore, the spacer domain is required for ADAMTS13 binding to von Willebrand factor. The first thrombospondin repeat also affects binding, and the C-terminal thrombospondin type 1 and CUB domains of ADAMTS13 may modulate this interaction.  相似文献   

20.
Interaction of von Willebrand factor (vWF) with its platelet receptor only occurs in vitro in the presence of a modulator such as ristocetin. We have recently confirmed that the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor involved in the ristocetin-dependent binding of vWF by reconstitution with the purified components [Berndt, M.C., Du, X., & Booth, W.J. (1988) Biochemistry 27, 633-640]. We have now developed a similar solid-phase reconstitution assay using an alternate modulator, botrocetin, for the competitive analysis of functional domains in both vWF and the GP Ib-IX complex. Botrocetin was purified from Bothrops jararaca venom by ammonium sulfate fractionation and subsequent DEAE-cellulose and hydroxylapatite chromatography. The purified protein was a 25-kilodalton (kDa) disulfide-linked dimer with apparent subunit molecular weights of 14,000 and 14,500. Binding studies with immobilized botrocetin demonstrated that botrocetin bound to vWF and to a 52/48-kDa region of vWF that contains the GP Ib binding domain, but not to glycocalicin, a proteolytic fragment of GP Ib that contains the vWF binding site. Binding of 125I-labeled vWF to GP Ib-IX complex coated beads and to platelets was strictly botrocetin-dependent with half-maximal binding at a botrocetin concentration of congruent to 0.27 microM. Botrocetin-dependent binding of vWF was specific, saturable, and comparable to that observed with ristocetin. An anti-vWF monoclonal antibody, 3F8, inhibited ristocetin- but not botrocetin-dependent binding of vWF, suggesting the presence of distinct ristocetin and botrocetin modulator sites on vWF. The botrocetin reconstitution assay was at least an order of magnitude more sensitive than the corresponding ristocetin assay for the competitive analysis of functional domains on both vWF and the GP Ib-IX complex and has confirmed the localization of the vWF-binding domain to the 45-kDa N-terminal region of GP Ib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号