首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

The presence of micropollutants in the environment has triggered research on quantifying and predicting their fate in wastewater treatment plants (WWTPs). Since the removal of micropollutants is highly related to conventional pollutant removal and affected by hydraulics, aeration, biomass composition and solids concentration, the fate of these conventional pollutants and characteristics must be well predicted before tackling models to predict the fate of micropollutants. In light of this, the current paper presents the dynamic modelling of conventional pollutants undergoing activated sludge treatment using a limited set of additional daily composite data besides the routine data collected at a WWTP over one year. Results showed that as a basis for modelling, the removal of micropollutants, the Bürger–Diehl settler model was found to capture the actual effluent total suspended solids (TSS) concentrations more efficiently than the Takács model by explicitly modelling the overflow boundary. Results also demonstrated that particular attention must be given to characterizing incoming TSS to obtain a representative solids balance in the presence of a chemically enhanced primary treatment, which is key to predict the fate of micropollutants.

  相似文献   

2.
Biological treatment processes allow for the effective elimination of anionic micropollutants from drinking water. However, special technologies have to be implemented to eliminate the target pollutants without changing water quality, either by adding new pollutants or removing essential water components. Some innovative technologies that combine the use of membranes with the biological degradation of ionic micropollutants in order to minimize the secondary contamination of treated water include pressure-driven membrane bioreactors, gas-transfer membrane bioreactors and ion exchange membrane bioreactors.  相似文献   

3.
Abstract

Enzymatic treatments based on oxidative enzymes, such as peroxidases, laccases and tyrosinases, have been proposed as an alternative to conventional methods to remove a broad range of contaminants present in wastewater. The aim of this study is to discuss existing technologies for the removal of pollutants based on the use of oxidative enzymes, including a discussion on the most important factors affecting the efficiency of the proposed systems. Factors involved in the catalytic cycle of the enzyme (biocatalyst, substrates and mediators), the addition of certain components to the reaction medium (additives, surfactants or solvents) as well as operational parameters (temperature, pH or agitation) will be discussed. Finally, two types of reactors: one-stage and two-stage enzymatic membrane reactors, especially designed for the treatment of micropollutants present in secondary effluents, will be described in detail.  相似文献   

4.
Textile wastewater is difficult to treat as it usually contains considerable amounts of different pollutants, which are often recalcitrant, toxic and inhibitory. Therefore, complex treatment schemes based on the sequence of various steps are usually required for an effective treatment. This explains why textile effluents are often treated in centralized plants and sometimes mixed with municipal wastewater. The adoption of new technologies for on-site treatment, instead, would be optimal, deeply reducing treatment costs. An innovative technology exhibiting several characteristics appropriate for the attainment of such a goal is sequencing batch biofilter granular reactor (SBBGR). To assess the suitability of this technology, two lab-scale reactors were operated, treating mixed municipal-textile wastewater and a pure textile effluent, respectively. Results have demonstrated that mixed wastewater can be successfully treated with very low hydraulic retention times (less than 10 hours). Furthermore, SBBGR shows to be an effective pre-treatment for textile wastewater for discharge into sewer systems. The economic evaluation of the process showed operative costs of 0.10 and 0.19 € per m(3) of mixed wastewater and textile wastewater, respectively.  相似文献   

5.
Industrial effluents from various sectors have become a matter of major environmental concern. The treatment of wastewater in recent year plays a significant role in order to remove the pollutants and to safeguard the water resource. The conventional wastewater treatment is considered costlier and associated with problem of sludge generation. Biosorption methods are considered as the potential solution due to their economical efficiency, good adsorption capacity and eco-friendliness. In this review, an extensive list of biosorbents from algae, bacteria, fungi and agricultural byproducts have been compiled. The suitability of biosorbents towards the eradication of heavy metals, textile dyes and phenolic compounds were highlighted. It is evident from the literature survey of recently published research articles that the biosorbents have demonstrated outstanding removal potential towards the wastewater pollutants. Therefore, biosorbents from the source of dead microbial and agricultural byproduct can be viable alternatives to activated carbon for the wastewater treatment.  相似文献   

6.
As a consequence of insufficient removal during treatment of wastewater released from industry and households, different classes of organic micropollutants are nowadays detected in surface and drinking water. Among these micropollutants, bioactive substances, e.g., endocrine disrupting compounds and pharmaceuticals, have been incriminated in negative effects on living organisms in aquatic biotope. Much research was done in the last years on the fate and removal of those compounds from wastewater. An important point it is to understand the role of applied treatment conditions (sludge retention time (SRT), biomass concentration, temperature, pH value, dominant class of micropollutants, etc.) for the efficiency of conventional treatment plants (CTP) and membrane bioreactors (MBR) concerning the removal of micropollutants such as pharmaceuticals, steroid- and xeno-estrogens. Nevertheless, the removal rates differ even from one compound to the other and are related to the physico-chemical characteristics of the xenobiotics.  相似文献   

7.
The presence of bioactive trace pollutants such as pharmaceuticals and ingredients of personal care products (PPCPs) in different environmental compartments (rivers, lakes, groundwaters, sediments, etc.) is an emerging issue due to the lack of existing information about the potential impact associated with their occurrence, fate and ecotoxicological effects. Due to the low PPCP concentrations reported in wastewaters (ppb or ppt) and their complex chemical structure, common technologies used in sewage and drinking water treatment plants may not be efficient enough to accomplish their complete removal. Information about physico-chemical characteristics such as acidity, lipophilicity, volatility and sorption potential is a useful tool to understand the different removal patterns observed. In order to perform an accurate overall mass balance along the different units of sewage treatment plants, it is necessary to gather information not only about the presence of micropollutants in the aqueous phase, but also on the fraction sorbed onto solids. Since only some PPCPs are very well eliminated by conventional sewage treatment configurations, new strategies such as modification of operating conditions (e.g. solids retention time), implementation of new technologies (e.g. biomembrane reactors) or additional advanced post-treatment steps (e.g. oxidation, adsorption, membranes) have been suggested for an increased efficiency.  相似文献   

8.
Every day, pulp and paper mills in the USA discharge millions of liters of wastewater. Primary and secondary treatment of this wastewater often enriches it with phosphorus, resulting in uncontrolled eutrophication of receiving water bodies. A new method of tertiary wastewater treatment uses controlled growth of algae in a photobioreactor to sequester phosphorus into algal biomass, which is then harvested. This typically requires addition of a nitrogen fertilizer (nitrate, ammonium, or urea) to the water. We show on the laboratory scale that chitin can be used as an alternative source of nitrogen for the tertiary treatment of pulp mill wastewater using algae. We demonstrate that phosphorus can be efficiently removed from pulp wastewater using algae and chitin. Furthermore, phosphorus removal with chitin did not result in an increase in dissolved nitrogen in the wastewater because it is insoluble, unlike conventional nitrogen fertilizers. Despite its insolubility, it has recently been found that many diverse algae and cyanobacteria can use it as a source of nitrogen. Chitin has many advantages over conventional nitrogen fertilizers for use in wastewater treatment technologies. It is the second-most abundant natural polymer and is a waste product of the shellfish industry. Chitin is sustainable, inexpensive, and carbon neutral. Thus, chitin improves the sustainability and carbon footprints associated with water treatment, while the production of commercially attractive algal biomass helps to offset costs associated with the water treatment system itself.  相似文献   

9.
高盐废水因具有硬度高、可生化性差、水质成分复杂等特点,是较难处理的工业废水之一。现有物化处理技术存在运行成本高、处理效率低、二次污染重等诸多瓶颈。耐盐/嗜盐微生物可在高盐环境下进行正常生理代谢,因此,开发经济、高效、可靠的高盐废水生物处理技术有望成为高盐废水处理的主流方向之一。本文系统综述了耐盐/嗜盐微生物盐溶、胞内小分子相容溶质积累、蛋白质稳定和细胞表面稳定等高渗透压适应策略。由于嗜盐微生物存在生长条件苛刻、功能微生物种类稀缺等问题,因此,耐盐微生物在高盐废水处理的未来应用空间更大。最新研究发现强化调控技术(电、光、磁)可提升微生物的高渗透压适应能力,其中电调控技术或是未来高盐废水生物处理的重点研究方向。  相似文献   

10.
污水处理工艺的生态安全性研究进展   总被引:1,自引:0,他引:1  
杨赛  华涛 《应用生态学报》2013,24(5):1468-1478
污水经处理后,排放和回用时常规指标通常都能达到设计标准,但出水水质并未达到无害化.从可持续发展的角度来讲,为保障生态环境及人群的安全,需要将污水的综合毒性纳入排放标准.为此,在工艺的选择及优化时应将毒性削减效果纳入其中,提高污水处理工艺的生态安全性.本文着重综述了以特定污水处理为目的、以污水回用为目的及以受纳水体安全为目的各类污水处理工艺的生态安全性研究,指出传统生物处理与高级氧化技术相结合,在去除污染物质的基础上可以强化对毒性的削减;对于以污水回用为目的处理工艺,对各种工艺进行集成可实现常规污染物去除和毒性削减的优势互补;以受纳水体生态安全为目的的污水处理工艺,应重点基于工艺运行参数和工艺单元选择进行毒性削减优化.最后对研究中存在的问题以及未来的学科发展方向提出了建议.  相似文献   

11.
Environmental biotechnology: the ongoing quest   总被引:7,自引:0,他引:7  
Environmental biotechnology, until now, has primarily focused on the development of technologies to treat aqueous, solid and gaseous wastes. At present, the basic knowledge on how biotechnology can handle these wastes has been acquired and the focus is now on the implementation of these processes as 'best available technology not entailing excessive costs' (BATNEEC) in the framework of strict and transparent environmental legislation. New environmental challenges continue to evolve, as it becomes clear that waste streams should be tackled in an overall holistic way. New technologies to reach this goal are currently under development. Novel aspects with respect to the domain of water treatment are, for example, the biomembrane reactor technology and the newly discovered processes to remove nitrogen by means of anaerobic ammonium oxidation. Also, most challenging is the continuing strive for re-use of treated wastewater. Indeed, water shortage is emerging in an increasing number of countries all over the world and necessitates the short cycling of water. Finally, biotechnology has a key role to play in the novel approaches to design wastewater treatment based on decentralised sanitation and reuse (DESAR). Solid waste is a major challenge worldwide. The implementation of anaerobic digestion to treat biowastes has become a grown-up technology. New approaches in which biotechnological processes are linked to physical processes, such as plasma technology, certainly deserve special attention for the coming decades. Soil and sediment clean up by means of biostimulation/remediation/augmentation is now well established. Certainly, a number of prospects need to be further explored, such as the use of special energy sources to stimulate in situ the microbial community and the seeding of knowledge to the in situ community by means of horizontal gene transfer mechanisms. A number of waste gases can be handled by biofilter systems. Biological treatment of wastegases is also evolving, inasmuch as that besides conventional chemical pollutants, now also highly problematic chemicals (even dioxins) can be dealt with through proper biotechnological approaches. A remarkable new potential is the use of well designed probiotics to upgrade aquaculture and together with conventional biological water treatment processes, to guarantee the overall water quality of this domain of food production.  相似文献   

12.
Molasses is a widely used feedstock in the bioethanol distilleries, which generate the dark colored wastewater known as molasses distillery wastewater (MDWW). This type of wastewater leads to pollution problems in the local environment where it is disposed of due to the high content of pollutants, among which colorants are of great concern. The main MDWW colorants are polyphenols, melanoidin, alkaline degradation products of hexoses, and caramels whose formation, concentration and antimicrobial effects are summarized in this review. A lot of efforts have been made in the community to remove the colorants. Effective treatment methods are discussed, including biological treatment, enzymatic treatment, chemical oxidation, and coagulation. These technologies could also be applied to remove the colorants as a final treatment step after the anaerobic digestion.  相似文献   

13.
Technology of streptomycin sulfate separation by two-stage foam separation   总被引:1,自引:0,他引:1  
Li J  Wu Z  Li R 《Biotechnology progress》2012,28(3):733-739
Industrial discharges from manufacturing streptomycin sulfate (SS) are inhibitory to biological wastewater treatment and need to be stripped of residual SS. For effective SS recovery from the wastewater, a two-stage foam separation technology was investigated using a column with a vertical ellipsoid-shaped channel (VEC) and a conventional one, and sodium dodecyl sulfate (SDS) served as the collector. The mechanism of enhancing foam drainage by VEC was theoretically analyzed. In the first stage, the column with VEC was used and under the optimal conditions of the liquid-loading volume 300 mL, volumetric airflow rate 100 mL/min, the initial pH 7.0 and the molar ratio of SDS to SS 8.0, an improved SS enrichment ratio of 16.7 was obtained. In the second stage, a conventional column was used and with a volumetric airflow rate of 450 mL/min, the foamate had a SS concentration of about 0.5 g/L, so it was used as the feed solution of the first stage. By the two-stage technology, the total SS recovery percentage reached as high as 99.7%. Thus, it was significantly effective for the two-stage foam separation technology to recover SS from the simulative wastewater.  相似文献   

14.
Pharmaceuticals and personal care products (PPCPs) consist of a variety of compounds extensively used for the treatment of human and animal diseases and for health or cosmetic reasons. PPCPs are considered as emerging environmental contaminants due to their ubiquitous presence in the environment and high environmental risks. In wastewater treatment plants using conventional activated sludge processes, many PPCPs cannot be efficiently removed. Therefore, there is an increasing need for more effective and cost-efficiency ways of removing PPCPs while treating wastewater. Algae-based technologies have recently attracted growing attentions for their potential application in wastewater treatment and hazardous contaminant removal, which are advantages in reducing operation cost while generating valuable products and sequestrating greenhouse gases at the same time. This work reviews the up-to date researches to reveal potential toxic effects of PPCPs on algae and algae-bacteria consortia, identify mechanisms involved in PPCP removal, and assess the fate of PPCPs in algae-based treatment systems. Current researches suggest that algae and algae-bacteria consortia have great potentials in PPCP removal but more works are required before algae-based technologies can be implemented in large scales. Knowledge gaps are identified and further research focuses are proposed in this review.  相似文献   

15.
Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.  相似文献   

16.

Microplastics have been widely considered as contaminants for the environment and biota. Till now, most previous studies have focused on the identification and characterization of microplastics in freshwater, sea water, and the terrestrial environment. Although microplastics have been extensively detected in the wastewater, research in this area is still lacking and not thoroughly understood. To fill this knowledge gap, the current review article covers the analytical methods of microplastics originating from wastewater streams and describes their sources and occurrences in wastewater treatment plants (WWTPs). Studies indicated that microplastic pollution caused by domestic washing of synthetic fibers could be detected in the effluent; however, most microplastics from personal care and cosmetic products (PCCPs) can be efficiently removed during wastewater treatment. Moreover, various techniques for sampling and analyzing microplastics from wastewater systems are reviewed; while, the implementation of standardized protocols for microplastics is required. Finally, the fate of microplastics during wastewater treatments and the environmental contamination of effluent to environment are presented. Previous studies reported that the advanced wastewater treatment (e.g., membrane bioreactor) is needed for improving the removal efficiency of small-sized microplastics (<?100 µm). Although the role of microplastics as transport vectors for persistent organic pollutants (POPs) is still under debate, they have demonstrated abilities to absorb harmful agents like pharmaceuticals.

  相似文献   

17.
酵母菌在废水处理中的应用现状和进展   总被引:1,自引:0,他引:1  
酵母菌作为一种极为宝贵的微生物资源,由于它具有良好的耐酸、耐渗透压等特点,因此它广泛被应用于高浓度有机废水的处理,包括有毒、含难降解污染物废水的处理,其处理能力优于驯化后的活性污泥系统,同时具有吸附重金属的作用;酵母菌能将大部分有机物转化成无毒且营养丰富的细胞蛋白供人类利用。随着酵母菌研究的深入和其他相关水处理技术的开发,酵母菌在废水处理中将得到更多、更好、更深的应用,实现环境、社会和经济等可持续发展。  相似文献   

18.
Microorganisms can degrade numerous organic pollutants owing to their metabolic machinery and to their capacity to adapt to inhospitable environments. Thus, microorganisms are major players in site remediation. However, their efficiency depends on many factors, including the chemical nature and the concentration of pollutants, their availability to microorganisms, and the physicochemical characteristics of the environment. The capacity of a microbial population to degrade pollutants within an environmental matrix (e.g. soil, sediment, sludge or wastewater) can be enhanced either by stimulation of the indigenous microorganisms by addition of nutrients or electron acceptors (biostimulation) or by the introduction of specific microorganisms to the local population (bioaugmentation). Although it has been practiced in agriculture and in wastewater treatment for years, bioaugmentation is still experimental. Many factors (e.g. predation, competition or sorption) conspire against it. However, several strategies are currently being explored to make bioaugmentation a successful technology in sites that lack significant populations of biodegrading microorganisms. Under optimal local conditions, the rate of pollutant degradation might increase upon addition of an inoculant to remediate a chemical spill; however, the most successful cases of bioaugmentation occur in confined systems, such as bioreactors in which the conditions can be controlled to favour survival and prolonged activity of the exogenous microbial population.  相似文献   

19.
Aerobic granules are the potential tools to develop modern wastewater treatment technologies with improved nutrient removal efficiency. These granules have several promising advantages over conventional activated sludge-based wastewater treatment processes. This technology has the potential of reducing the infrastructure and operation costs of wastewater treatment by 25%, energy requirement by 30%, and space requirement by 75%. The nutrient removal mechanisms of aerobic granules are slightly different from that of the activated sludge. For instance, unlike activated sludge process, according to some reports, as high as 70% of the total phosphorus removed by aerobic granules were attributed to precipitation within the granules. Similarly, aerobic granule-based technology reduces the total amount of sludge produced during wastewater treatment. However, the reason behind this observation is unknown and it needs further explanations based on carbon and nitrogen removal mechanisms. Thus, as a part of the present review, a set of new hypotheses have been proposed to explain the peculiar nutrient removal mechanisms of the aerobic granules.  相似文献   

20.
我国城市地表径流污染治理技术探讨   总被引:7,自引:0,他引:7  
城市地表径流是典型的非点源污染,具有地域范围广、随机性强、成因复杂等特点,已成为水环境污染的重要因素之一。本文提出由源处理、输移控制和汇处理组成的城市地表径流污染控制对策,并探讨了各种具体的城市径流污染控制与治理技术,认为初期雨水的有效截留将成为下一步的研究重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号