首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental (Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature (T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature (T a), and black globe temperatures (T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core (R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.  相似文献   

2.
Changes in body core temperature (T cor) and heat balance after an abrupt release of lower body negative pressure (LBNP) were investigated in 5 volunteers under the following conditions: (1) an ambient temperature (T a) of 20 °C or (2) 35 °C, and (3)T a of 25 °C with a leg skin temperature of 30°C or (4) 35°C. The leg skin temperature was controlled with water perfusion devices wound around the legs. Rectal (T re), tympanic (T ty) and esophageal (T es) temperatures, skin temperatures (7 sites) and oxygen consumption were measured. The intensity of LBNP was adjusted so that the amount of blood pooled in the legs was the same under all conditions. When a thermal balance was attained during LBNP, application of LBNP was suddenly halted. The skin temperatures increased significantly after the release of LBNP under all conditions, while oxygen consumption hardly changed. The release of LBNP caused significant falls inT cor s under conditions (1) and (3), but loweredT cor s very slightly under conditions (2) and (4). The changes inT es were always more rapid and greater than those ofT ty andT re. The falls inT ty andT re appeared to be explained by changes in heat balance, whereas the sharp drop ofT es could not be explained especially during the first 8 min after the release of LBNP. The results suggest that a fall inT cor after a release of LBNP is attributed to an increase in heat loss due to reflexive skin vasodilation and is dependent on the temperature of venous blood returning from the lower body. It is presumed thatT es may not be an appropriate indicator forT cor when venous return changes rapidly.  相似文献   

3.
Heat stress in feedlot cattle is known to reduce their performance. The challenge comes in determining reliable predictors of current and near-future changes in thermal status and performance. A 42-d study, using crossbred (Bos taurus) steers was conducted during summer months (July through August) to identify best environmental determinants of rumen temperature (Trumen) and feed intake (FI) in feedlot cattle with access to shade. A further goal was to define the relationship between Trumen and FI. Shade coverage was approximately 50%, and all animals were provided standard feedlot diets and water ad libitum. Intraruminal telemetric boluses recorded Trumen several times each hour. Ear tags, telemetrically connected to a feed monitoring system, provided FI data using RFID technology. Data loggers recorded ambient conditions in sun and shade, along with black globe temperature. Regression analyses identified daylight black globe and air temperatures in shade, with one hour delays, as the best predictors of Trumen. Prediction of FI was much less reliable. Unexpectedly, Trumen was not superior to ambient variables in predicting FI. Maximum daily temperature humidity index, calculated using BG in sun with a 5-d lag, was the best significant predictor of FI. These results indicate for feedlot cattle that although air temperature alone in the shade may be the best predictor of Trumen in the heat, black globe temperature in the sun may be a better determinant of feed intake over time. Additional studies are needed to verify the delayed FI response which seems unusually long.  相似文献   

4.
A thermostatic, taxidermic model sheep was used to assess the effects of thermoregulatory behaviour of shorn sheep at night in a winter environment with mean air temperatures slightly above freezing, variable wind speeds, rain and cloud cover.Testing in a wind tunnel showed that angle of incidence to the wind had no effect on heat loss at wind speeds < 2 m s−1 (7 km h−1), but at wind speeds of 7 m s−1 (25 km h−1), heat loss was 14% greater when the model was side-on rather than tail- or head-on to the wind.In tests on pasture, standing side-on to the early morning sun reduced heat loss from the model by 33%. Three hours “lying” on the lee side of a 1-m high synthetic Sarlon windbreak on a frosty night resulted in a reduction in heat loss of 6% below that when standing or 11% below that in a standing position in the open. When the model was placed in the centre of a tight group of 16 shorn sheep, its heat loss was reduced by an average of 14%.Heat loss was also reduced if the model was moved from the open, to regions of lower wind speed adjacent to windbreaks; the effect was greater on the leeward than the windward side.The reduction one metre leeward of a grass hedge (hybrid Phalaris) was 15% compared with 12% one metre leeward of a synthetic (Sarlon) windbreak, which is consistent with the preference of shorn sheep to shelter by Phalaris rather than Sarlon windbreaks.The microclimates where heat loss from the model were lowest correspond to those sought by shorn sheep in cold weather, and the results indicate that shorn sheep have very sensitive thermosensing mechanisms and efficient thermoregulatory behaviour.  相似文献   

5.
We studied daily rhythmicity of body temperature (T b) before and during hibernation in Anatolian ground squirrels (Spermophilus xanthoprymnus) under natural and laboratory conditions using surgically implanted temperature loggers. Under both conditions, robust daily T b rhythmicity with parameters comparable to those of other ground squirrel species was observed before but not during hibernation. Euthermic animals had robust daily T b rhythms with a mean of 37.0°C and a range of excursion of approximately 4°C. No T b rhythm was detected during torpor bouts, either because T b rhythmicity was absent or because the daily range of excursion was smaller than 0.2°C. The general patterns of hibernation that we observed in Anatolian ground squirrels were similar to those previously observed by other investigators in other species of ground squirrels.  相似文献   

6.
Heart rates, respiratory rates, body temperatures, ad libitum ‘day’ and ‘night’ food consumption and body weight changes have been examined in 15 mature Merino wethers shorn in moderate environmental conditions. All sheep showed a depression in food consumption for two days after shearing. Sheep that gained weight during the next three weeks then increased their food consumption at night by approximately 30% although the average daily consumption was only increased by 5%. Sheep that lost weight showed a depressed food consumption throughout the three week period after shearing. Marked increases in the temperature difference between ear skin and air as well as thermal tachypnoea during the warmest period of the day were recorded in all sheep 14–16 days after shearing. This indicated that the critical temperature for all sheep had decreased by about 10°C. These signs of acclimatisation appeared at similar times in all sheep, suggesting that increased resistance to body cooling developed at similar rates in weight gain and weight loss sheep and independent of the origin of body heat production. The results of the investigations are discussed in relation to the concept that the initial response to cold stress includes a depression in food intake and that the duration of this depression is a function of the cold stimulus and the strain it induces in the sheep.  相似文献   

7.
In various occupations, workers may be exposed to extreme environmental conditions and physical activities. Under these conditions the ability to follow the workers' body temperature may protect them from overheating that may lead to heat related injuries. The "Dräger" Double Sensor (DS) is a novel device for assessing body-core temperature (Tc). The purpose of this study was to evaluate the accuracy of the DS in measuring Tc under heat stress. Seventeen male participants performed a three stage protocol: 30 min rest in a thermal comfort environment (20–22 °C, 50% relative humidity), followed by an exposure to a hot environment of 40 °C, 40% relative humidity −30 min at rest and 60 min of exercise (walking on a treadmill at 5 km/h and 2% elevation). Simultaneously temperatures measured by the DS (TDS) and by rectal temperature (Tre) (YSI-401 thermistor) were recorded and then compared. During the three stages of the study the average temperature obtained by the DS was within±0.3 °C of rectal measurement. The correlation between TDS and Tre was significantly better during the heat exposures phases than during resting under comfort conditions. These preliminary results are promising for potential use of the DS by workers under field conditions and especially under environmental heat stress or when dressed in protective garments. For this goal, further investigations are required to validate the accuracy of the DS under various levels of heat stress, clothing and working levels.  相似文献   

8.
High‐temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high‐temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high‐temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site‐based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax, the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (?8 °C) from polar to equatorial regions. Such increases in high‐temperature tolerance are much less than expected based on the 20 °C span in high‐temperature extremes across the globe. Moreover, with only modest high‐temperature tolerance despite high summer temperature extremes, species in mid‐latitude (~20–50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat‐wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat‐wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax, we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat‐wave events become more severe with climate change.  相似文献   

9.
Abstract. Body temperatures and kinematics are measured for male Centris pallida bees engaged in a variety of flight behaviours (hovering, patrolling, pursuit) at a nest aggregation site in the Sonoran Desert. The aim of the study is to test for evidence of thermoregulatory variation in convective heat loss and metabolic heat production and to assess the mechanisms of acceleration and forward flight in field conditions. Patrolling males have slightly (1–3 °C) cooler body temperatures than hoverers, despite similar wingbeat frequencies and larger body masses, suggesting that convective heat loss is likely to be greater during patrolling flight than during hovering. Comparisons of thorax and head temperature as a function of air temperature (Ta) indicate that C. pallida males are thermoregulating the head by increasing heat transfer from the thorax to the head at cool Ta. During patrolling flight and hovering, wingbeat frequency significantly decreases as Ta increases, indicating that variation in metabolic heat production contributes to thermal stability during these behaviours, as has been previously demonstrated for this species during flight in a metabolic chamber. However, wingbeat frequency during brief (1–2 s) pursuits is significantly higher than during other flight behaviours and independent of Ta. Unlike most other hovering insects, C. pallida males hover with extremely inclined stroke plane angles and nearly horizontal body angles, suggesting that its ability to vary flight speed depends on changes in wingbeat frequency and other kinematic mechanisms that are not yet described.  相似文献   

10.
ABSTRACT. 1. Daily patterns of activity, thoracic temperature (Tth) and thermoregulatory behaviour in relation to environmental conditions were studied in the European skipper Thymelicus lineola (Ochsenheimer) adults. 2. Daily activity was limited mainly by Tth, which in turn was dependent on air temperature (Ta) and sunlight. However, when light intensity fell to < 100 W m?2, skippers also became inactive. 3. Tth was sometimes as much as 12°C above Ta, and this was most pronounced under cool conditions when basking activity predominated. 4. Black globe temperature (Tbg) which, in the absence of wind, is influenced by both Ta, and radiant heat load in a manner similar to a basking butterfly, was used to approximate the maximum Tth attained by T.lineola through basking. 5. Both males and females basked at Tbg >20°C, and if this temperature was not attained, skippers remained inactive. As Tbg increased, basking activity declined more rapidly in males than in females. Basking bouts were also shorter in males. 6. Males also flew, fed and courted females at Tbg >20°C, while females only fed and flew at Tbg >22°C. The percentage of both sexes feeding and flying, and courting in the case of males, were positively correlated with Tbg. 7. In warm weather, males divided their time equally between flying and feeding, while females spent the majority of their time feeding. Feeding bouts were shorter and flying bouts were longer in males than in females. Flight duration in males was positively correlated with Tbg. 8. Skippers avoided, and, consequently laid fewer eggs in, shady areas. 9. Sexual differences in activity patterns in relation to weather reflect differences in the reproductive requirements of the two sexes.  相似文献   

11.
Extreme climatic events, such as heat waves, cold snaps and drought spells, related to global climate change, have become more frequent and intense in recent years. Acclimation of plant physiological processes to changes in environmental conditions is a key component of plant adaptation to climate change. We assessed the temperature response of leaf photosynthetic parameters in wheat grown under contrasting water regimes and growth temperatures (Tgrowth). Two independent experiments were conducted under controlled conditions. In Experiment 1, two wheat genotypes were subjected to well-watered or drought-stressed treatments; in Experiment 2, the two water regimes combined with high, medium and low Tgrowth were imposed on one genotype. Parameters of a biochemical C3-photosynthesis model were estimated at six leaf temperatures for each factor combination. Photosynthesis acclimated more to drought than to Tgrowth. Drought affected photosynthesis by lowering its optimum temperature (Topt) and the values at Topt of light-saturated net photosynthesis, stomatal conductance, mesophyll conductance, the maximum rate of electron transport (Jmax) and the maximum rate of carboxylation by Rubisco (Vcmax). Topt for Vcmax was up to 40°C under well-watered conditions but 24–34°C under drought. The decrease in photosynthesis under drought varied among Tgrowth but was similar between genotypes. The temperature response of photosynthetic quantum yield under drought was partly attributed to photorespiration but more to alternative electron transport. All these changes in biochemical parameters could not be fully explained by the changed leaf nitrogen content. Further model analysis showed that both diffusional and biochemical parameters of photosynthesis and their thermal sensitivity acclimate little to Tgrowth, but acclimate considerably to drought and the combination of drought and Tgrowth. The commonly used modelling approaches, which typically consider the response of diffusional parameters, but ignore acclimation responses of biochemical parameters to drought and Tgrowth, strongly overestimate leaf photosynthesis under variable temperature and drought.  相似文献   

12.
The purpose of this investigation was to measure expired air temperature under cool- and hot-humid environmental conditions at rest and during prolonged exercise to: (1) establish if significant increases in body core temperature affected expired air temperature, and (2) to determine if the temperature setting for heating the pneumotachometer in an open-circuit system requires adjustment during prolonged exercise tests to account for changes in expired air temperature. Six male distance runners completed two tests in cool-humid [dry bulb temperature (T db) 15.5 (SD 1.3)°C, wet bulb temperature (T wb) 12.1 (SD 1.4)°C] and hot-humid [T db 31.6 (SD 0.6)°C, T wb 24.9 (SD 0.6)°C, black globe temperature (T g) 34.3 (SD 0.3)°C] environments, running at a velocity corresponding to 65% [67.1 (SD 2.82)%] of their maximal oxygen uptake. Rectal temperature and expired air temperatures were compared at rest, and after 30 min and 60 min of exercise for each environment. The main finding of this investigation was a significant (P < 0.05) but small increase in expired air temperature between the 30-min and 60-min measures in the hot-humid environment. No significant differences in expired air temperature were found between the 30-min and 60-min measures in the cool-humid environment. These findings suggest that: (1) expired air temperature is influenced by elevations in body core temperature during prolonged exercise in hot-humid conditions, and (2) that the temperature setting for heating the head of the pneumotachometer (after determining the appropriate temperature through measuring expired air temperature for the set environmental condition) may require adjustment during prolonged exercise trials in hot-humid environmental conditions. Accepted: 27 February 1997  相似文献   

13.
A technique was developed to monitor and describe the relationship between core body temperature (Tc) and rumen temperature (Trum) in cattle. This relationship was assessed in cattle subjected to varying environmental temperatures and subsequent variations in dry matter and water intake. Increasing the environmental wet bulb temperature (WBT) from ambient conditions (approximately 15 °C WBT) to mild heat stress conditions (25 °C WBT) caused an increase in both Tc and Trum with significant decreases in feed intake and increases in water consumption. Despite increases in both Tc and Trum, reductions in dry matter intake, and an increase in water consumption, the relationship between Tc and Trum did not change.  相似文献   

14.
Summary At low air temperatures (2.3–13.9°C), Wedge-tailed Shearwaters (Puffinus pacificus) shivered and their oxygen consumption increased to as much as 283% of the mean value (0.77 ml O2/g·h) within the thermoneutral zone of air temperature (23–34°C). The minimal thermal conductance of the tissues and plumage was similar to the value predicted from the body mass (320.5 g). The oxygen consumption of the birds within their thermoneutral zone was lower than predictions based on body mass. At elevated air temperatures, the shearwaters panted at respiratory frequencies as high as 260 respirations/min; maximal respiratory frequencies were not invoked until the birds had become hyperthermic. During exposure to a hot environment, the oxygen consumption of the birds increased and in most instances the shearwaters were not able to lose heat equivalent to their concurrent metabolic heat production.Symbols and abbreviations BMR basal metabolic rate - C total total thermal conductance - f respiratory frequency - TEWL total evaporative water loss - T st stomach temperature - T re rectal temperature  相似文献   

15.
The lesser mouse lemur, a small Malagasy primate, is exposed to strong seasonal variations in ambient temperature and food availability in its natural habitat. To face these environmental constraints, this nocturnal primate exhibits biological seasonal rhythms that are photoperiodically driven. To determine the role of daylength on thermoregulatory responses to changes in ambient temperature, evaporative water loss (EWL), body temperature (T b) and oxygen consumption, measured as resting metabolic rate (RMR), were measured in response to ambient temperatures ranging from 5 °C to 35 °C, in eight males exposed to either short (10L:14D) or long (14L:10D) daylengths in controlled captive conditions. In both photoperiods, EWL, T b and RMR were significantly modified by ambient temperatures. Exposure to ambient temperatures below 25 °C was associated with a decrease in T b and an increase in RMR, whereas EWL remained constant. Heat exposure caused an increase in T b and heat loss through evaporative pathways. Thermoregulatory responses to changes in ambient temperature significantly differed according to daylength. Daily variations in T b and EWL were characterized by high values during the night. During the diurnal rest, lower values were found and a phase of heterothermia occurred in the early morning followed by a spontaneous rewarming. The amplitude of T b decrease with or without the occurrence of torpor (T b < 33 °C) was dependent on both ambient temperature and photoperiod. This would support the hypothesis of advanced thermoregulatory processes in mouse lemurs in response to selective environmental pressure, the major external cue being photoperiodic variations. Accepted: 4 August 1998  相似文献   

16.
Photosynthesis rate (An) becomes unstable above a threshold temperature, and the recovery upon return to low temperature varies because of reasons not fully understood. We investigated responses of An, dark respiration and chlorophyll fluorescence to supraoptimal temperatures of varying duration and kinetics in Phaseolus vulgaris asking whether the instability of photosynthesis under severe heat stress is associated with cellular damage. Cellular damage was assessed by Evans blue penetration (enhanced membrane permeability) and by H2O2 generation [3,3′‐diaminobenzidine 4HCl (DAB)‐staining]. Critical temperature for dark fluorescence (F0) rise (TF) was at 46–48 °C, and a burst of respiration was observed near TF. However, An was strongly inhibited already before TF was reached. Membrane permeability increased with temperature according to a switch‐type response, with enhanced permeability observed above 48 °C. Experiments with varying heat pulse lengths and intensities underscored the threshold‐type loss of photosynthetic function, and indicated that the degree of photosynthetic deterioration and cellular damage depended on accumulated heat‐dose. Beyond the ‘point of no return’, propagation of cellular damage and reduction of photosynthesis continued upon transfer to lower temperatures and photosynthetic recovery was slow or absent. We conclude that instability of photosynthesis under severe heat stress is associated with time‐dependent propagation of cellular lesions.  相似文献   

17.
Braun  V.  Buchner  O.  Neuner  G. 《Photosynthetica》2002,40(4):587-595
The species specific response of photosystem 2 (PS2) efficiency and its thermotolerance to diurnal and seasonal alterations in leaf temperature, irradiance, and water relations were investigated under alpine field conditions (1 950 m) and in response to an in situ long-term heat treatment (+3 K). Three plant species were compared using the naturally occurring microstratification of alpine environments, i.e. under contrasting leaf temperatures but under similar macroclimatic conditions. Thermotolerance of PS2 showed a high variability in all three species of up to 9.6 K. Diumal changes (increases or even decreases) in PS2 thermotolerance occurred frequently with a maximum increase of +4.8 K in Loiseleuria procumbens. Increasing leaf temperatures and photosynthetic photon flux density influenced thermotolerance adjustments. Under long-term heating (+3 K) of L. procumbens canopies with infra-red lamps, the maxima of the critical (Tc) and the lethal (Tp) temperature of PS2 increased by at least 1 K. Thermotolerance of the leaf tissue (LT50) increased significantly by +0.6 K. The effects of slight water stress on thermotolerance of PS2 were species specific. High temperature thresholds for photoinhibition were significantly different between species and increased by 9 K from the species in the coldest microhabitat to the species in the warmest. Experimental heating of L. procumbens canopies by +3 K caused a significant (p>0.01) upward shift of the high temperature threshold for photoinhibition by +3 K. Each species appeared to be very well adapted to the thermal conditions of its microhabitat as under the most frequently experienced daytime leaf temperatures no photoinhibition occurred. The observed fine scale thermal adjustment of PS2 in response to increased leaf temperatures shows the potential to optimise photosynthesis under varying environmental conditions as long as the upper thermal limits are not exceeded.  相似文献   

18.
It has been speculated that the control of core temperature is modulated by physiological demands. We could not prove the modulation because we did not have a good method to evaluate the control. In the present study, the control of core temperature in mice was assessed by exposing them to various ambient temperatures (Ta), and the influence of circadian rhythm and feeding condition was evaluated. Male ICR mice (n=20) were placed in a box where Ta was increased or decreased from 27 °C to 40 °C or to −4 °C (0.15 °C/min) at 0800 and 2000 (daytime and nighttime, respectively). Intra-abdominal temperature (Tcore) was monitored by telemetry. The relationship between Tcore and Ta was assessed. The range of Ta where Tcore was relatively stable (range of normothermia, RNT) and Tcore corresponding to the RNT median (regulated Tcore) were estimated by model analysis. In fed mice, the regression slope within the RNT was smaller in the nighttime than in the daytime (0.02 and 0.06, respectively), and the regulated Tcore was higher in the nighttime than in the daytime (37.5 °C and 36.0 °C, respectively). In the fasted mice, the slope remained unchanged, and the regulated Tcore decreased in the nighttime (0.05 and 35.9 °C, respectively), while the slopes in the daytime became greater (0.13). Without the estimating individual thermoregulatory response such as metabolic heat production and skin vasodilation, the analysis of the TaTcore relationship could describe the character of the core temperature control. The present results show that the character of the system changes depending on time of day and feeding conditions.  相似文献   

19.
Summary Yellow-bellied marmots characteristically live in montane-mesic environments, but in several areas in western North America, this species extended its range into lowland-xeric habitats. Body mass was significantly smaller in the lowland-xeric population from eastern Washington at 393 m than in the montane-mesic population from western Colorado at 2900 m. Oxygen consumption of marmots from montane-mesic and lowland-xeric environments was signiflcantly affected by ambient temperature (TA) water regimen, population, and a population x water regimen x temperature interaction. Lowland-xeric animals had a higher metabolic rate at low TAs, but a lower metabolic rate at higher TAs than the montane-mesic aminals. Oxygen consumption was lower on a restricted-water regimen than on ad libitum water in both populations. Coefficients relating oxygen consumption to body mass were affected by TA, water regimen, and population. These intraspecific coefficients are larger than the interspecific coefficients for all mammals. Body temperature (TB) was affected significantly by TA, water regimen, and population. TA body mass, and a population x water regimen interaction significantly affected conductance. Conductance generally was higher in the lowland-xeric than in the montane-mesic marmots. Both populations increased conductance at high TA, but the lowland-xeric population dissipated a much higher proportion of the heat by evaporative water loss (EWL) than did the montane-mesic population. Metabolic water production exceeded or equaled EWL at 5–20°C. Smaller body size, reduced metabolism at high TA, and increased EWL at high TA characterized the lowland-xeric population.Metabolic rates of yellow-bellied marmots were higher than predicted from body size during the reproductive season but decreased to 67% of that predicted from the Kleiber curve by late summer. Marmots minimize thermoregulatory costs by concentrating activity at times when the microclimate is favorable, by tolerating hyperthermia at high TA in the field, and by having a conductance lower than that predicted from body size.Abbreviations DHC dry-heat conductance - EHL evaporative heat loss - EWL evaporative water loss - HP heat produced - T A ambient temperature - T n body temperature - M body mass  相似文献   

20.
It has been proposed that there is a thermal cost of the mane to male lions, potentially leading to increased body surface temperatures (Ts), increased sperm abnormalities, and to lower food intake during hot summer months. To test whether a mane imposes thermal costs on males, we measured core body temperature (Tb) continuously for approximately 1 year in 18 free‐living lions. There was no difference in the 24‐hr maximum Tb of males (n = 12) and females (n = 6), and males had a 24‐hr mean Tb that was 0.2 ± 0.1°C lower than females after correcting for seasonal effects. Although feeding on a particular day increased 24‐hr mean and 24‐hr maximum Tb, this phenomenon was true of both male and female lions, and females had higher 24‐hr mean and 24‐hr maximum Tb than males, on both days when lions did not feed, and on days when lions did feed. Twenty‐four‐hour Tb was not influenced by mane length or color, and 24‐hr mean Tb was negatively correlated with mane length. These data contradict the suggestion that there exists a thermal cost to male lions in possessing a long dark mane, but do not preclude the possibility that males compensate for a mane with increased heat loss. The increased insulation caused by a mane does not necessarily have to impair heat loss by males, which in hot environments is primarily through respiratory evaporative cooling, nor does in necessarily lead to increased heat gain, as lions are nocturnal and seek shade during the day. The mane may even act as a heat shield by increasing insulation. However, dominant male lions frequent water points more than twice as often as females, raising the possibility that male lions are increasing water uptake to facilitate increased evaporative cooling. The question of whether male lions with manes compensate for a thermal cost to the mane remains unresolved, but male lions with access to water do not have higher Tb than females or males with smaller manes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号