首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A recombinant vaccinia virus was constructed that expressed poliovirus coat precursor protein P1 fused to about two-thirds of the 2A proteinase. The truncated 2A segment could be cleaved away from the P1 region by coinfecting with poliovirus type 1, 2, or 3 or with human rhinovirus 14 but not with encephalomyocarditis virus. Further cleavage of the vector-derived P1 to yield mature poliovirus capsid proteins was not observed. Attempts to isolate vaccinia virus recombinants containing portions of the poliovirus genome that encompassed the complete gene for proteinase 2A were unsuccessful, unless expression of functional 2A was abolished by insertion of a frameshift mutation. We conclude that an activity of the 2A proteinase, probably its role in translational inhibition, prevented isolation of vaccinia virus recombinants that expressed 2A.  相似文献   

2.
Random systematic mutagenesis was used to generate a library of human rhinovirus 14 chimeras that each display a segment from the V3 loop of human immunodeficiency virus type 1. The sequence XXIGPGRAXX, where X could be any of the 20 amino acids, was inserted at the neutralizing immunogenic site II of human rhinovirus 14 between VP2 residues 159 and 160. Twenty-five unique chimeric viruses were isolated, and the identity of their randomized residues was determined. A nonrandom amino acid distribution that may reflect structural requirements for viability was observed at the randomized positions. Fifteen of 25 chimeras were neutralized by one or more of a panel of four anti-human immunodeficiency virus type 1 V3 loop antibody preparations, indicating that antigenicity had been successfully transplanted. Libraries of chimeric viruses produced by using the techniques described may be a source of vaccines and other immunotherapeutic reagents. The random systematic mutagenesis methodology described should be generally useful for the rapid transplantation of foreign sequences into viral coat and other proteins to produce libraries containing members with the desired properties.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type I (HTLV-I) were purified by sucrose density gradient centrifugation in the presence of 1 mM EDTA. Pelleted gradient fractions were analyzed for total protein, total Gag capsid protein, and total zinc. Zinc was found to copurify and concentrate with the virus particles. Through successive cycles of resuspending in buffer containing EDTA and repelleting, the zinc content remained constant at about 1.7 mol of zinc per mol of Gag protein. Proteins from purified virus (HIV-1 and HTLV-I) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to polyvinylidene fluoride paper, and probed with 65ZnCl2. Viral nucleocapsid (NC) proteins (HIV-1 p7NC and HTLV-I p15NC) bound 65Zn2+. Other retroviruses, including simian immunodeficiency virus, equine infectious anemia virus, bovine leukemia virus, Moloney murine leukemia virus, mouse mammary tumor virus, and Mason-Pfizer monkey virus, were found to contain amounts of zinc per milligram of total protein similar to those found in HIV-1 and HTLV-I. Collectively, these data support the hypothesis that retroviral NC proteins function as zinc finger proteins in mature viruses.  相似文献   

4.
Human rhinovirus 14 has a pseudo T = 3 icosahedral structure in which 60 copies of the three larger capsid proteins VP1, VP2 and VP3 are arranged in an icosahedral surface lattice, reminiscent of T = 3 viruses such as tomato bushy stunt virus and southern bean mosaic virus. The overall secondary and tertiary structures of VP1, VP2 and VP3 are very similar. The structure of human rhinovirus 14, which was refined at a resolution of 3.0 A [R = 0.16 for reflections with F greater than 3 sigma(F)], is here analyzed in detail. Quantitative analysis of the surface areas of contact (proportional to hydrophobic free energy of association) supports the previously assigned arrangement within the promoter, in which interactions between VP1 and VP3 predominate. Major contacts among VP1, VP2 and VP3 are between the beta-barrel moieties. VP4 is associated with the capsid interior by a distributed network of contacts with VP1, VP2 and VP3 within a promoter. As the virion assembly proceeds, the solvent-accessible surface area becomes increasingly hydrophilic in character. A mixed parallel and antiparallel seven-stranded sheet is composed of the beta C, beta H, beta E and beta F strands of VP3 in one pentamer and beta A1 and beta A2 of VP2 and the VP1 amino terminus in another pentamer. This association plays an essential role in holding pentamers together in the mature virion as this contact region includes more than half of the total short non-bonded contacts between pentamers. Contacts between protomers within pentamers are more extensive than the contacts between pentamers, accounting in part for the stability of pentamers. The previously identified immunogenic regions are correlated with high solvent accessibility, accessibility to large probes and also high thermal parameters. Surface residues in the canyon, the putative cellular receptor recognition site, have lower thermal parameters than other portions of the human rhinovirus 14 surface. Many of the water molecules in the ordered solvent model are located at subunit interfaces. A number of unusual crevices exist in the protein shell of human rhinovirus 14, including the hydrophobic pocket in VP1 which is the locus of binding for the WIN antiviral agents. These may be required for conformational flexibility during assembly and disassembly. The structures of the beta-barrels of human rhinovirus 14 VP1, VP2 and VP3 are compared with each other and with the southern bean mosaic virus coat protein.  相似文献   

5.
Rhinovirus type 16 was found to replicate in mouse L cells that express the viral receptor, human intercellular adhesion molecule 1 (ICAM-1). However, infection of these cells at a low multiplicity of infection leads to no discernible cytopathic effect, and low virus titers are produced. A variant virus, 16/L, was isolated after alternate passage of rhinovirus 16 between HeLa and ICAM-1 L cells. Infection of mouse cells with 16/L leads to higher virus titers, increased production of RNA, and total cytopathic effect. Three amino acid changes were identified in the P2 region of virus 16/L, and the adaptation phenotype mapped to two changes in protein 2C. The characterization of a rhinovirus host range mutant will facilitate the investigation of cellular proteins required for efficient viral growth and the development of a murine model for rhinovirus infection.  相似文献   

6.
Polypeptide precursors to the major glycoproteins specified by herpes simplex virus type 1 were identified in immunoprecipitation experiments using antisera that reacted specifically with the viral glycoproteins and their precursors. The results demonstrate that the major glycosylated proteins detected in infected cells are derived from four antigenically distinct polypeptides. Three of these polypeptides become glycosylated in two discrete stages, yielding partially glycosylated intermediates and fully glycosylated products. The final products are the predominant species detected in cytoplasmic virions and in plasma membranes. The fourth polypeptide precursor appears to acquire very little carbohydrate and differs in several respects from the other three precursors.  相似文献   

7.
Early Interaction of Rhinoviruses with Host Cells   总被引:35,自引:23,他引:12  
The rate of attachment of type 2 virions to suspensions of HeLa cells is much greater than that of type 14, but the number of receptor sites per cell is similar for each type. The receptor sites may be partly saturated with excess virions; attachment is greatly reduced after about 10(4) particles have been taken up per cell. A lack of saturation of type 14 receptors by excess type 2 indicates that their receptor sites are separate on the cell surface. Excess of type 2 blocks attachment of type 1A, however, and excess of type 14 blocks type 51. Attachment of the human rhinoviruses is temperature-dependent with a Q(10) of 2.7. The eclipse reaction is also temperature-dependent. At 34.5 C, the irreversible eclipse of cell-associated rhinovirus type 2 requires only a few minutes, whereas the rate of eclipse of cell-associated type 14 is considerably slower. The eclipse product of type 2 rhinovirus has been recovered from infected cells. It sediments at about 90% of the rate of the infective virions and is missing virus polypeptide 4 (the smallest of the capsid polypeptides). Upon being subjected to CsCl gradient centrifugation, virus polypeptide 2 is also lost but the product still contains ribonucleic acid and bands at about 1.45 g/cc.  相似文献   

8.
We have discovered two metal ion binding compounds, pyrithione (PT) and hinokitiol (HK), that efficiently inhibit human rhinovirus, coxsackievirus, and mengovirus multiplication. Early stages of virus infection are unaffected by these compounds. However, the cleavage of the cellular eukaryotic translation initiation factor eIF4GI by the rhinoviral 2A protease was abolished in the presence of PT and HK. We further show that these compounds inhibit picornavirus replication by interfering with proper processing of the viral polyprotein. In addition, we provide evidence that these structurally unrelated compounds lead to a rapid import of extracellular zinc ions into cells. Imported Zn2+ was found to be localized in punctate structures, as well as in mitochondria. The observed elevated level of zinc ions was reversible when the compounds were removed. As the antiviral activity of these compounds requires the continuous presence of the zinc ionophore PT, HK, or pyrrolidine-dithiocarbamate, the requirement for zinc ions for the antiviral activity is further substantiated. Therefore, an increase in intracellular zinc levels provides the basis for a new antipicornavirus mechanism.  相似文献   

9.
A Molla  C U Hellen    E Wimmer 《Journal of virology》1993,67(8):4688-4695
A polyprotein cleavage assay has been developed to assay the proteolytic activities in vitro of the 2A proteinases encoded by poliovirus and human rhinovirus 14, which are representative members of the Enterovirus and Rhinovirus genera of picornaviruses, respectively. The elastase-specific substrate-based inhibitors elastatinal and methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone (MPCMK) inhibited both 2A proteinases in vitro. The electrophoretic mobilities of both 2A proteinases were reduced upon incubation with elastatinal, whereas the mobility of a Cys-109-->Ala poliovirus 2Apro mutant was unchanged, an observation suggesting that this inhibitor may have formed a covalent bond with the active-site Cys-109 nucleophile. Iodoacetamide, calpain inhibitor 1, and antipain inhibited poliovirus 2Apro. MPCMK caused a reduction in the yields of the enteroviruses poliovirus type 1 and coxsackievirus A21 and of human rhinovirus 2 in infected HeLa cells but did not affect the growth of encephalomyocarditis virus, a picornavirus of the Cardiovirus genus. MPCMK abrogated the shutoff of host cell protein synthesis that is induced by enterovirus and rhinovirus infection and reduced the synthesis of virus-encoded polypeptides in infected cells. These results indicate that the determinants of substrate recognition by 2A proteinases resemble those of pancreatic and leukocyte elastases. These results may be relevant to the development of broad-range chemotherapeutic agents against entero- and rhinoviruses.  相似文献   

10.
R Quadt  E M Jaspars 《FEBS letters》1991,278(1):61-62
The necessity of coat protein for infection of plants by alfalfa mosaic virus (AIMV) and other ilarviruses distinguishes this virus group from other plant virus groups. Recently, the presence of both a zinc-finger type motif and zinc in AIMV coat protein was described [(1989) Virology 168, 48-56]. We studied the effect of a zinc chelator on viral RNA synthesis. Strong inhibition of AIMV RNA-dependent RNA polymerase (RdRp) by ortho-phenanthroline (OP) was observed.  相似文献   

11.
The methodological approaches of isolation of preparations of FMDV structural polypeptides to analyse them by the electrophoresis and electro-focussing methods are presented. The value of isoelectric points of protein coat of FMDV structural polypeptides and corresponding them values of electric potential are determined. The similarity and differences of FMDV serotypes, characterized by the value of relative surface, falling on separate polypeptides, are determined for the virion structure on the basis of superposition principle. FMDV has been shown to possess the summarized negative charge of different values. The charge depends on the virus type and it is a determining condition for viruses resistance in environment. A graphical model of FMDV is suggested on the basis of systemic approach and it reflects the dipole character of electric charge distribution in virion structure and agrees with the virus model, built on the basis of icosahedron symmetry.  相似文献   

12.
Using simple design and selective pressure, we have evolved an artificial M13 bacteriophage coat protein. M13 coat proteins first reside in the bacterial inner membrane and subsequently surround the DNA core of the assembled virus. The artificial coat protein (ACP) was designed and evolved to mimic both functions of the natural M13 coat proteins, but with an inverted orientation. ACP is a non-functional coat protein because it is not required for the production of phage particles. Instead, it incorporates into a phage coat which still requires all the natural coat proteins for structural integrity. In contrast with other M13 coat proteins, which can display polypeptides as amino-terminal fusions, ACP permits the carboxy-terminal display of large polypeptides. The results suggest that viruses can co-opt host membrane proteins to acquire new coat proteins and thus new functions. In particular, M13 bacteriophage can be engineered for new functions, such as carboxy-terminal phage display.  相似文献   

13.
The Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys zinc fingers of retroviral nucleocapsid proteins are prime antiviral targets because of conservation of the Cys and His chelating residues and the absolute requirement of these fingers in both early and late phases of retroviral replication. We previously reported that certain disulfide-substituted benzamides (DIBAs) chemically modify the Cys residues of the fingers, resulting in inhibition of human immunodeficiency virus type 1 (HIV-1) replication (W. G. Rice, J. G. Supko, L. Malspeis, R. W. Buckheit, Jr., D. Clanton, M. Bu, L. Graham, C. A. Schaeffer, J. A. Turpin, J. Domagala, R. Gogliotti, J. P. Bader, S. M. Halliday, L. Coren, R. C. Sowder II, L. O. Arthur, and L. E. Henderson, Science 270:1194-1197, 1995). We now examine the consequences of the interaction of DIBAs with the zinc fingers of the HIV-1 p7 nucleocapsid protein and its Pr55gag precursor. In HIV-1-infected U1 cells, DIBAs inhibited the release of infectious virions, and even under conditions in which virion particles were produced, the particles were noninfectious. DIBAs caused abnormal processing of Gag precursors, and the inhibitory effect on processing was not due to inhibition of the HIV-1 protease enzyme or Pr55gag myristoylation. Rather, the defect in processing was due to the formation of intermolecular cross-linkages among the zinc fingers of adjacent Gag molecules, rendering the precursors no longer recognizable by HIV-1 protease. Likewise, DIBAs caused intermolecular cross-linkage among recombinant Pr55gag packaged into pseudovirions, thereby generating modified precursors that were resistant to the action of protease. Thus, DIBAs chemically modified the mutationally intolerant retroviral zinc fingers in infected cells, interrupting protease-mediated maturation of virions and leading ultimately to the production of compromised virions.  相似文献   

14.
15.
16.
The nucleocapsid protein (NC) from the mouse mammary tumor virus (MMTV) has been overexpressed in Escherichia coli and purified to homogeneity for structural studies by nuclear magnetic resonance (NMR) spectroscopy. The protein contains two copies of a conserved zinc-coordinating "CCHC array" or "zinc knuckle" motif common to the nucleocapsid proteins of nearly all known retroviruses. The residues comprising and adjacent to the zinc knuckles were assigned by standard two-dimensional (1)H and three-dimensional (1)H-(15)N NMR methods; the rotational dynamic properties of the protein were determined from (15)N relaxation experiments, and distance restraints derived from the nuclear Overhauser effect (NOE) data were used to calculate the three-dimensional structure. The (1)H-(1)H NOE and (15)N relaxation data indicate that the two zinc knuckles do not interact with each other, but instead behave as independently folded domains connected by a flexible 13-residue linker segment. The proximal zinc knuckle folds in a manner that is essentially identical to that observed previously for the two zinc knuckles of the human immunodeficiency virus type 1 nucleocapsid protein and for the moloney murine leukemia virus nucleocapsid zinc knuckle domain. However, the distal zinc knuckle of MMTV NC exhibits a rare three-dimensional fold that includes an additional C-terminal beta-hairpin. A similar C-terminal reverse turn-like structure was observed recently in the distal zinc knuckle of the Mason-Pfizer monkey virus nucleocapsid protein [Gao, Y., et al. (1998) Protein Sci. 7, 2265-2280]. However, despite a high degree of sequence homology, the conformation and orientation of the beta-hairpin in MMTV NC is significantly different from that of the reverse turn in MPMV NC. The results support the conclusion that structural features of NC zinc knuckle domains can vary significantly among the different genera of retroviridae, and are discussed in terms of the recent and surprising discovery that MMTV NC can facilitate packaging of the HIV-1 genome in chimeric MMTV mutants.  相似文献   

17.
18.
A heavy metal tolerant strain of the ericoid mycorrhizal species Oidiodendron maius, isolated from soil heavily contaminated with zinc, was previously shown to tolerate high concentrations of zinc and cadmium ions in the growth medium. We have investigated some of the specific molecular responses of this fungal strain to the presence of increasing concentrations of zinc ions in the growth medium. In particular, we show that zinc ions induce a general change in the array of secreted proteins, with a shift towards the production of more basic, low molecular weight polypeptides. Some of these proteins were microsequenced and identified through homology search in databases. Among them are hydrolytic enzymes (nuclease, proteinase, lysozyme) and two superoxide dismutase isoforms. The latter are antioxidant enzymes known to play a role in heavy metal response in plants, animals and microorganisms.  相似文献   

19.
Zinc ion inhibits the posttranslational cleavages of human rhinovirus-1A, encephalomyocarditis virus, and poliovirus polypeptides. Each virus displayed a different susceptibility to zinc. However, in each case the cleavages of the capsid precursor and the cleavages analogous to the C --> D --> E conversion in encephalomyocarditis virus were most sensitive to zinc. Higher concentrations of zinc resulted in the buildup of even larger precursor polypeptides of a size between 106,000 and 214,000 daltons. The sizes of these polypeptides and the relative position of their gene loci on the viral RNA were determined. These data were used to place these polypeptides in the over-all scheme of viral protein processing.  相似文献   

20.
The left HindIII-A-Sal fragment of the vaccinia virus DNA has been analyzed by the technique of mRNA hybridizational selection with the subsequent translation in cell-free protein-synthesizing system from the rabbit reticulocytes. The viral mRNA hybridizable with the fragment was shown to direct the synthesis of 12, 17, 27, 42, 70 kD polypeptides in the cell-free protein-synthesizing system. Each of 12 and 42 kD polypeptides was demonstrated to react specifically with antisera to structural p12 and p42 coat proteins. The structural coat proteins p12, p20, p42 of the vaccinia virus are concluded to be the products of the same viral gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号