首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the structure of the late cytoplasmic RNAs made after infection with wild-type simian virus 40 and a set of viable mutants, four of which have deletions and one an insertion within the nucleotide sequence specifying the leader segment of the 16S and 19S mRNA's. The principal findings are: (i) simian virus 40 16S and 19S mRNA's made during infections with wild-type virnds and possibly in the nucleotide sequence comprising the "leader" segments. (II) "Spliced" 16S and 19S mRNA's are made during infections with each of the mutants although, in some cases, the ratio of 19S to 16S mRNA species is reduced. (iii) The deletion or insertion of nucleotides within the DNA segment defined by map position 0.70 to 0.75 causes striking alterations in the types of leader structures in the late mRNAs. (iv) Many of the late RNA leader segments produced after infection with the mutants appear to be multiply spliced, i.e., instead of the major 200- to 205-nucleotide-long leader segment present in wild-type 16S mRNA, the RNAs produced by several of the deletion mutants have leaders with whort discontiguous segments.  相似文献   

2.
We compared the 5' termini and splices of the late 16S and 19S RNAs synthesized by wild-type simian virus 40 and five mutants containing deletions in their late leader region. All mutants produced more unspliced 19S RNA than did wild-type virus, and in two mutants, unspliced 19S RNA constituted more than 60% of the total 19S species. The other three mutants each utilized predominantly a different one of the three spliced species of 19S mRNA. All mutants also produced decreased quantities of 16S mRNA, indicating that they may be defective for splicing both late RNAs. None of the 5' termini of the 16S and 19S RNAs made by the five mutants predominated as in those made by the wild type. Some of the mutant 5' termini were the same as those used by the wild type, whereas others were different. Although present, the major 5'-end positions used by the wild type were frequently not used as major sites by the mutants. In addition, mutants with very similar deletion endpoints synthesized RNAs with different 5' ends. Thus, downstream mutations have a pronounced effect on the location of 5' ends of the late RNAs, and there is no obvious involvement of a measuring function in the placement of 5' ends. For all mutants and wild-type virus, the 5' termini used for 16S and 19S RNAs showed major differences, with some degree of correlation found between the 5' ends and the internal splices of specific mRNA species. A model for the regulation of simian virus 40 late gene expression is presented to explain these findings.  相似文献   

3.
4.
S A Sedman  P J Good    J E Mertz 《Journal of virology》1989,63(9):3884-3893
Numerous viral and cellular RNAs are polycistronic, including several of the late mRNA species encoded by simian virus 40 (SV40). The functionally bicistronic major late 16S and functionally tricistronic major late 19S mRNA species of SV40 contain the leader-encoded open reading frames (ORFs) LP1, located upstream of the sequence encoding the virion protein VP1, and LP1*, located upstream of the sequence encoding the virion proteins VP2 and VP3. To determine how these leader ORFs affect synthesis of the virion proteins, monkey cells were transfected with viral mutants in which either the leader-encoded translation initiation signal was mutated or the length and overlap of the leader ORF relative to the ORFs encoding the virion proteins were altered. The levels of initiation at and leaky scanning past each initiation signal were determined directly by quantitative analysis of the viral proteins synthesized in cells transfected with these mutants. Novel findings from these experiments included the following. (i) At least one-third of ribosomes bypass the leader-encoded translation initiation signal, GCCAUGG, on the SV40 major late 16S mRNA. (ii) At least 20% of ribosomes bypass even the consensus translation initiation signal, ACCAUGG, when it is situated 10 bases from the 5' end on the major late 16S mRNA. (iii)O The presence of the leader ORF on the bicistronic 16S mRNA species reduces VP1 synthesis threefold relative to synthesis from a similar RNA that lacks it. (iv) At least half and possibly all VP1 synthesized from the bicistronic 16S mRNA species is made by a leaky scanning mechanism. (v) LP1 and VP1 are synthesized from the bicistronic 16S mRNA species at approximately equal molar ratios. (vi) Approximately half of the VP1 synthesized in SV40-infected cells is synthesized from the minor, monocistronic 16S mRNA even though it accounts for only 20% of the 16S mRNA present. (vii) The presence and site of termination of translation of the leader ORF on the late 19S mRNAs affect the relative as well as absolute rates of synthesis of VP2 and VP3.  相似文献   

5.
6.
Mapping the spliced and unspliced late lytic SV40 RNAs.   总被引:63,自引:0,他引:63  
C J Lai  R Dhar  G Khoury 《Cell》1978,14(4):971-982
  相似文献   

7.
8.
9.
10.
11.
Structure of the adenovirus 2 early mRNAs   总被引:55,自引:0,他引:55  
A J Berk  P A Sharp 《Cell》1978,14(3):695-711
  相似文献   

12.
The untranslated leader sequences of rhesus macaque simian immunodeficiency virus mRNAs form a stable secondary structure, TAR. This structure can be modified by RNA splicing. In this study, the role of TAR splicing in virus replication was investigated. The proportion of viral RNAs containing a spliced TAR structure is high early after infection and decreases at later times. Moreover, proviruses containing mutations which prevent TAR splicing are significantly delayed in replication. These mutant viruses require approximately 20 days to achieve half-maximal virus production, in contrast to wild-type viruses, which require approximately 8 days. We attribute this delay to the inefficient translation of unspliced-TAR-containing mRNAs. The molecular basis for this translational effect was examined in in vitro assays. We found that spliced-TAR-containing mRNAs were translated up to 8.5 times more efficiently than were similar mRNAs containing an unspliced TAR leader. Furthermore, these spliced-TAR-containing mRNAs were more efficiently associated with ribosomes. We postulate that the level of TAR splicing provides a balance for the optimal expression of both viral proteins and genomic RNA and therefore ultimately controls the production of infectious virions.  相似文献   

13.
14.
15.
16.
17.
By pretreating simian virus 40-infected BSC-1 cells with glucosamine, [(3)H]uridine labeling of both cellular and viral RNA can be halted instantaneously by addition of cold uridine. We have studied the fate of pulse-labeled viral RNA from cells at 45 h postinfection under these conditions. During a 5-min period of labeling, both the messenger and nonmessenger regions of the late strand were transcribed. After various chase periods, nuclear viral species which sediment at 19, 17.5, and 16S were observed. Nuclear viral RNA decays in a multiphasic manner. Of the material present at the beginning of the chase period, 50% was degraded rapidly with a half-life of 8 min (initial processing). This rapidly degraded material was that fraction of the late strand which did not give rise to stable late mRNA species. Forty percent was transported to the cytoplasm, and 10% remained in the nucleus as material which sedimented in the 2 to 4S region. These 2 to 4S viral RNAs had a half-life of 3 h, and hybridization studies suggest that they are in part coded for by the late-strand nonmessenger region and are derived from the initial nuclear processing step. Another part is coded for by the late-strand messenger region and may be generated by some subsequent nuclear cleavages of 19S RNA into 17.5 and 16S RNAs. Transport of nuclear viral RNA into the cytoplasm was detected after a 5-min pulse and a 7-min chase. The maximum amount of labeled viral RNA was accumulated in the cytoplasm after a 30-min to 1-h chase. At least two viral cytoplasmic species were observed. Kinetic data suggest that 19S RNA is transported directly from the nucleus. Whether cytoplasmic 16S is formed by cleavage of 19S RNA in the cytoplasm is not clear. The half-lives of cytoplasmic 19 and 16S RNAs can be approximated as 2 and 5 h, respectively.  相似文献   

18.
The major late 16S mRNA species of simian virus 40 encodes both a 61-amino-acid protein, LP1, and the major virion protein, VP1. Although the initiation signal GCCAUGG is usually utilized at high efficiency, at least one-third of 40S ribosomal subunits bypass it when it is present on the major 16S mRNA of simian virus 40 (S. A. Sedman, P. J. Good, and J. E. Mertz, J. Virol. 63:3884-3893, 1989). The LP1 translation initiation codon is situated 10 bases from the 5' end of this mRNA. To determine whether the short length of the untranslated leader of this mRNA affects the efficiency of translation initiation at the LP1 initiation signal, monkey cells were transfected with plasmids which encode major late 16S-like mRNAs with 5' untranslated regions (UTRs) of 6 or 44 bases. Decreasing the length of the 5' UTR from 44 to 6 bases resulted in a 30% decrease in translation initiation at the LP1 AUG and a threefold increase in synthesis of VP1. When the VP1 open reading frame was replaced with the chloramphenicol acetyltransferase open reading frame, the reduction in 5' UTR length resulted in a 70% decrease in translation initiation at the LP1 AUG and a 30% increase in chloramphenicol acetyltransferase synthesis. Therefore, ribosomes bypass an AUG codon more efficiently when it is located very close to the 5' end of the mRNA.  相似文献   

19.
The size distributions of polyribosomes containing each of three simian virus 40 late 16S mRNA species that differ in nucleotide sequence only within their leaders were determined. The two 16S RNA species with shorter leaders were incorporated into polysomes that were both larger (on average) and narrower in size distribution than was the predominant wild-type 16S RNA. Therefore, the nucleotide sequence of the leader can influence the number of ribosomes present on the body of an mRNA molecule. We propose a model in which the excision from leaders of sizeable translatable regions permits more frequent utilization of internally located translation initiation signals, thereby enabling genes encoded within the bodies of polygenic mRNAs to be translated at higher rates. In addition, the data provide the first direct evidence that VP1 can, indeed, be synthesized in vivo from the species of 16S mRNA that also encodes the 61-amino acid leader protein.  相似文献   

20.
The EIa region of an Adenovirus 5 recombinant has been substituted by a modular gene encoding dihydrofolate reductase (DHFR). In this recombinant, the mouse DHFR cDNA was positioned behind sequences of the major late promoter and the complete tripartite leader. The leader sequences end in the normal 5' splice site (SS) of the third leader, so that RNA splicing joins the tripartite leader to a 3' splice site immediately upstream of the DHFR cDNA. At late stages of infection, high levels of DHFR mRNAs were synthesized. At early times in the late stage, this mRNA was efficiently translated; however, at later times translation of DHFR decreased probably due to poor competition with other late mRNAs. Synthesis of DHFR protein from an analogous Adenovirus 5 recombinant containing only the first late leader was studied in parallel. Equivalent levels of DHFR mRNA were expressed after infection with this recombinant virus; however, the efficiency of DHFR translation was at least 20 fold lower than that of the DHFR mRNA containing the tripartite leader. This suggests that the tripartite leader sequence is important for translation in the late stage of infection. As reported previously, the Ad5 recombinant containing only the first leader vastly overexpresses polypeptide IX from a novel mRNA, formed by the splicing of the first leader in the modular DHFR gene to the 3' splice site in the EIb region. Cells infected with this recombinant synthesize very little normal mRNA from the EIb region. Here, we demonstrated that coinfection of 293 cells with this recombinant and wild type Adenovirus 5 also results in decreased EIb mRNA synthesis. We propose that the overproduction of polypeptide IX suppresses mRNA expression from the EIb and IX promoter sites, probably by an autoregulation loop active during lytic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号