首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The glue genes of Drosophila melanogaster comprise a family of genes expressed at high levels in the salivary glands of late third instar larvae in response to the insect hormone ecdysone. We present evidence that, in contrast to the other glue genes, Sgs-4 is turned on throughout Drosophila development and is not expressed exclusively in the larval salivary glands. Larvae transformed with an Sgs-4/Adh (alcohol dehydrogenase) hybrid gene exhibit Sgs-4-directed Adh expression in the larval proventriculus as well as in the salivary glands as early as the first instar. Sgs-4-specific RNA can be detected at very low levels during all stages of development. During late third instar, levels of Sgs-4 RNA in the salivary glands increase several-thousand-fold, thereby accounting for the large amounts of Sgs-4 protein present in the glue produced by the salivary glands. This pattern of expression is unique to the Sgs-4 gene. While expression of several of the other glue genes can be detected in embryos and early larvae, they appear to be expressed neither throughout development nor in the larval proventriculus. Appearance of the glue gene RNAs in mid third instar salivary glands is noncoordinate, even for the chromosomally clustered genes Sgs-3, Sgs-7, and Sgs-8.  相似文献   

5.
6.
The steroid hormone 20-hydroxyecdysone controls both induction and repression of the Drosophila 'intermolt gene' Sgs-4. We show here that the ecdysone receptor binds to two sites, element I and element II, in the regulatory region of Sgs-4. A functional analysis revealed that element II appears to be of no importance for Sgs-4 expression, while element I proved to be an ecdysone response element that is necessary, but not sufficient, for induction of Sgs-4 expression. Our results provide no evidence that repression of Sgs-4 expression is mediated by one of the two receptor binding sites. In the close vicinity of elements I and II, we detected two binding sites of secretion enhancer binding protein 3 (SEBP 3). Like receptor element I, one of these sites also proved to be necessary, but not sufficient, for expression of Sgs-4. Therefore, induction of Sgs-4 requires binding of both ecdysone receptor and SEBP 3 to a complex hormone response unit, which also contains binding sites for a third factor, SEBP 2. The SEBP 2 sites coincide with binding sites of products of the Broad-Complex locus, which has been implicated recently with transduction of the hormonal signal. Thus, the available data suggest that induction of Sgs-4, and possibly other 'intermolt genes', is a combination of a primary and a secondary response to the hormone.  相似文献   

7.
The Drosophila melanogaster 68C chromosomal locus is the site of a prominent polytene chromosome puff that harbors the genes Sgs-3, Sgs-7 and Sgs-8. These genes code for proteins that are part of the salivary glue that Drosophila larvae secrete as a means of fixing themselves to an external substrate for the duration of the pre-pupal and pupal period. The 68C glue genes are regulated by the steroid hormone ecdysterone, with the hormone required for both initiation and cessation of gene expression during the third larval instar. Previous work has defined sequences sufficient for expression of abundant levels of Sgs-3 mRNA at the correct time and in the correct tissue. We show here that sequences sufficient for normal tissue- and stage-specific accumulation of Sgs-3 RNA, but adequate only for low levels of expression, lie within 130 bp of the 5' end of the gene, or within the gene.  相似文献   

8.
9.
10.
11.
12.
Pig-1 and Sgs-4 are a pair of closely linked and divergently transcribed Drosophila melanogaster genes, which are both expressed in larval salivary glands but at different times during development. While Sgs-4 is expressed at high levels only at the end of the third instar, Pig-1 exhibits a major peak of expression during late second and early third instar. Thus, Pig-1 expression declines as Sgs-4 expression is induced. In this paper, we show that three adjacent elements located within the short region between these genes can account for the switch from Pig-1 to Sgs-4 expression. A 170-bp segment acts as an enhancer to direct Sgs-4 expression in late-third-instar salivary glands. A 64-bp sequence located just upstream from the enhancer can modify its temporal specificity so that it works throughout the third instar. Expression induced at mid-third instar by a combination of these two elements can be repressed by a negative regulatory sequence located still further upstream. We present evidence suggesting that the changing interactions between these regulatory elements and the Sgs-4 and Pig-1 promoters lead to the correct pattern of expression of the two genes.  相似文献   

13.
The structure of the Drosophila melanogaster salivary gland secretion gene Sgs-5 has been determined by DNA sequence analysis of cloned genomic DNA. This developmentally and tissue-specific gene is a member of the third instar intermolt gene set and is under control of the insect molting hormone ecdysterone. RNA protection experiments show that the RNA coding region of Sgs-5 contains 769 nucleotides and is divided into three exons by two small introns. The protein-coding region appears to begin after a short untranslated RNA leader (33 nucleotides) and to result in a protein of 163 amino acids. The first 18 amino acids give the amino-terminal end the highly hydrophobic nature characteristic of a signal peptide.  相似文献   

14.
The gene for a major salivary gland secretion protein (Sgs-1) in Drosophila melanogaster has been mapped to chromosome 2 between dp (13.0) and cl (16.5). In the late third instar larva, a puff forms in this region. This puff (25 B) regresses as the ecdysteroid concentration increases prior to puparium formation. Quantitative analysis of the secretory protein 1, showed that, when present in extra dose, region 25 B results in a significant elevation in its relative amount. This suggests that the structural gene for this protein is localized in this region and that its synthesis is directly correlated to the activity of the 25 B puff.  相似文献   

15.
Cooperative enhancement at the Drosophila Sgs-3 locus   总被引:4,自引:0,他引:4  
The Drosophila glue gene Sgs-3 is specifically expressed in the secretory cells of the salivary glands of third instar larvae. We have assayed the expression of gene fusions to determine the role of cis-acting Sgs-3 sequences in conferring this pattern of expression. These experiments define two regulatory regions required for expression of reporter genes from the Sgs-3 promoter. One region, between 106 and 56 bp upstream of the Sgs-3 mRNA 5' end is sufficient for low but correct tissue- and stage-specific expression. A second region, lying between 629 and 130 bp 5' of the RNA start site is functionally equivalent; that is, it alone will also direct low level, specific expression. These two regions act synergistically to give high level expression. More distant upstream regions function to further increase levels of expression. These two regulatory elements can confer a salivary gland-specific pattern of expression on a heterologous promoter and are also sufficient to drive gene expression in other Drosophila species, implying conservation of regulators.  相似文献   

16.
17.
18.
19.
20.
The 2B5 chromosomal locus inDrosophila contains a gene,I(1)npr-1 +, whose product required intrans for the expression of the larval salivary gland-specific geneSgs-3. We have addressed the question as to whether this factor acts in a cell-autonomous manner or not. This was made possible by the use of a transformant strain that makes anSgs-3-E. coli β-galactosidase (lacZ) fusion protein, under the control of anSgs-3 promoter, allowing the cellular examination of gene expression by a histochemical assay for enzyme activity. Using genetic methods, larvae that were mosaic for the loss of function mutationl(l)npr-1 were generated. The expression of theSgs-3-lacZ fusion gene was assayed histochemically in such larvae. Our results strongly indicate a cell-autonomous requirement for the product ofl(1)npr-1+. This is in contrast to another factor, the hormone ecdysterone, which is also required forSgs-3 expression, but acts in a non-autonomous manner  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号