首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mechanism for the isomerization of d-glucose to d-fructose by sodium aluminate is proposed, involving transformation of a β-d-glucopyranose-1,3-aluminate complex into an α-d-fructofuranose-1,3,6-aluminate complex through an enolaluminate complex that inhibits the formation of a d-mannose-aluminate complex. The α-d-fructofuranose-1,3,6-aluminate further reacts to form a d-psicose-aluminate complex in substantial yield. Constant degradation of the 6-carbon sugars occurred during the reaction because of the high pH of the solution. The C6 sugars were analyzed chromatographically but the degradation products were not identified.  相似文献   

2.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

3.
The cell association and degradation of insulin and α2-macroglobulin-trypsin complex were measured in rat adipocytes with or without various inhibitors in the attempt to clarify whether the two ligands were taken up by the same or by different pathways. Several inhibitors, and particularly those of membrane traffic, lysosomal function and transglutaminase activity, affected the two ligands differently. Thus, chloroquine (100 μM) reduced both the uptake of α2-macroglobulin · trypsin and its receptor-mediated degradation by about 70%. In contrast, the uptake of insulin was increased 2–3-times and the receptor-mediated degradation was only slightly reduced. Methylamine (10 mM) and ammonium chloride (10 mM) reduced degradation of α2-macroglobulin · trypsin markedly without affecting that of insulin. Leupeptin (100 μM) increased uptake and reduced degradation of α2-macroglobulin · trypsin without affecting insulin. Dansylcadaverine (500 μM) almost abolished uptake and degradation of α2-macroglobulin · trypsin but had little effect on insulin. Moreover, uptake and degradation of α2-macroglobulin · trypsin was much more sensitive than insulin to the action of metabolic inhibitors such as dinitrophenol and cyanide. The results show that the two ligands are taken up by functionally different systems. In addition, they support the hypothesis that lysosomes play a relatively minor role in the receptor-mediated degradation of insulin.  相似文献   

4.
Modifications at C-3 and C-4 of 2-amino-2-deoxy-d-glucose have been developed. A 3,4-double bond was introduced into benzyl 2-acetamido-2-deoxy-3,4-di-O-Methylsulfonyl-α-d-glucopyranoside by treatment with NaI and Zn. Epoxidation of the double bond with m-chloroperoxybenzoic acid gave an exo-epoxide exclusively. The stereochemistry of the epoxidation product has been confirmed by an alternative synthesis. An analysis of the 1H-n.m.r. spectra indicates that both the 3,4-unsaturated derivatives and the epoxide exist in the °H1 (d) conformation. Nucleophilic reagents (F?, I?) opened the 3,4-epoxide to give 4-substituted derivatives having the d-gulo configuration. Thus, 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-4-iodo-α-d-gulopyranose and 2-acetamido-1,3,6-tri-O-acetyl-3,4-dideoxy-4-fluoro-α-d-gulopyranose have been synthesized. Reduction of the double bond in the key intermediate and deprotection gave 2-acetamido-2,3,4-trideoxy-d-glucopyranose. Some of the derivatives were active as inhibitors of growth of mouse, mammary adenocarcinoma cells in culture.  相似文献   

5.
Streptococcus mutans Ingbritt (serotype c) was found to secrete basic glucosyltranserase (sucrose: 1,6-α-D-glucan 3-α- and 6-α- glucosyltransferase). The enzyme preparation obtained by ethanol fractionation, DEAE Bio-Gel A chromatography, chromatofocusing and preparative isoelectric focusing was composed of three isozymes with slightly different isoelectric points (pI 8.1–8.4). The molecular weight was estimated to be 151 000 by SDS-polyacrylamide gel electrophoresis. The specific activity of the enzyme was 9.8 IU per mg of protein and the optimum pH was 6.5. The enzyme was activated 2.4-fold by commercial dextran T10, and had Km values of 7.1 μM for the dextran and 4.3 mM for sucrose. Glucan was de novo synthesized from sucrose by the enzyme and found to be 1,6- α-D-glucan with 17.7% of 1,3,6-branching structure by a gas-liquid chromatography-mass spectroscopy.  相似文献   

6.
It has been suggested that respiratory stress is involved in the mechanism underlying the dormancy-breaking effect of hydrogen cyanamide (H2CN2) and sodium azide in grapevine buds; indeed, reductions in oxygen levels (hypoxia) and inhibitors of respiration promote bud-break in grapevines. In this study, we showed that, hypoxia increased starch hydrolysis soluble sugar consumption and up-regulated the expression of α-amylase genes (Vvα-AMYs) in grapevine buds, suggesting that these biochemical changes induced by hypoxia, may play a relevant role in the release of buds from endodormancy (ED). Three of the four Vvα-AMY genes that are expressed in grapevine buds were up-regulated by hypoxia and a correlation between changes in sugar content and level of Vvα-AMY gene expression during the hypoxia treatment was found, suggesting that soluble sugars mediate the effect of hypoxia on Vvα-AMY gene expression. Exogenous applications of soluble sugars and sugar analogs confirmed this finding and revealed that osmotic stress induces the expression of Vvα-AMY1 and Vvα-AMY3 and that soluble sugars induces Vvα-AMY2 and Vvα-AMY4 gene expression. Interestingly, the plant hormone gibberellic acid (GA3) induced the expression of Vvα-AMY3 and Vvα-AMY4 genes, while dormancy breaking stimuli, chilling and cyanamide exposure, mainly induced the expression of Vvα-AMY1 and Vvα-AMY2 genes, suggesting that these two α-amylase genes might be involved in the release of grapevine buds from the ED.  相似文献   

7.
Endogenous levels of two metabolites of prostacyclin, 6-keto-prostaglandin F (spontaneous hydrolysis product) and 6,15-diketo-13,14-dihydroprostaglandin F (enzymatic degradation product) were measured in urine of adults and neonates by gas chromatography-mass spectrometry, using deuterated internal standards. The method comprised extraction of prostanoids by reverse-phase cartridges and purification by silicic acid column chromatography and reverse- and straight-phase high-performance liquid chromatographies. Exogenous 6-keto-prostaglandin F and 6,keto-13,14-dihydroprostaglandin F added to urine were recovered quantitatively by gas chromatography-mass spectrometry. Endogenous levels of 6-keto-prostaglandin F in urine of adults were 0.11 ± 0.05 (S.D.) ng/ml (n = 12), whereas in urine of neonates the levels were much higher: 1.41±0.36 (S.D.) ng/ml (n = 5) on the 3rd day of life declining to 0.51 ± 0.21 (S.D.) ng/ml (n = 5) on the 5th day. 6-keto-prostaglandin F was also estimated in both age groups by radioimmunoassay. Urinary levels of 6,15-diketo-13,14-dihydroprostaglandin F in neonates on the 3rd day of life were 2.12 ± 0.70 (S.D.) ng/ml (n = 4) and declined until the 5th day. In adult urine this metabolite was below the limit of detection (0.20 ng/ml).  相似文献   

8.
Oxidative dimerization of 7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranoside (1) gave a high yield of the diyne 2, readily reduced by lithium aluminum hydride to the trans,trans-diene (4). The structures of 2 and 4 were established spectroscopically and by degradation of 4 to d-glycero-d-galacto-heptitol (perscitol). A mixture of the alkyne 1 and its 7-epimer 10 was readily oxidized by dimethyl sulfoxide-acetic anhydride to the 6-ketone 11, and the 8-alkene analog was similarly prepared from the alkenes derived from 1 and 10. Likewise, oxidation of 6,7-dideoxy-1,2-O-isopropylidene-α-d-gluco(and β-L-ido)-hept-6-enopyranose gave the corresponding 5-ketone. The acetylenic ketone 11 gave a crystalline oxime and (2,4-dinitrophenyl)hydrazone, the latter being accompanied by the product of attack of the reagent at the acetylene terminus (C-8). Previous work had shown that formyl-methylenetriphenylphosphorane did not convert 1,2:3,4-di-O-isopropylidene-6-aldehydo-α-d-galacto-hexodialdo-1,5-pyranose into the corresponding C8 unsaturated aldehyde, although the latter was obtainable via1 and 10 by an ethynylation-hydroboration sequence. The Wittig route with formylmethylenetriphenylphosphorane is shown to be satisfactory for obtaining C7 unsaturated aldehydes from 3-O-benzyl-1,2-O-isopropylidene-5-aldehydo-α-d-xylo-pentodialdo-1,4-furanose (22) and the 3-epimer of 22, respectively. These reactions provide convenient access to higher-carbon sugars and chiral dienes for synthesis of optically pure products of cyclo-addition reactions.  相似文献   

9.
Proton nuclear magnetic resonance spectroscopy has been reevaluated concerning the assignment of anomeric structure of glycosphingolipids. Solubility problems due to a varying number of sugars are avoided by permethylation, allowing a wide range of glycolipids to be compared. High resolution spectra were recorded in chloroform solution for the following substances with known structure, most of them representing a successive building up of members of the globo-series: ceramide, Galβ1 → 1Cer, a mixture of Glcα1 → 1Cer and Glcβ1 → 1Cer, lactosylceramide, globotriaosylceramide, globotetraosylceramide (globoside), and GalNAcα1 → 3globotetraosylceramide (Forssman hapten). Resonances originating in anomeric protons were identified and possible interference from other signals was defined. A complex set of resonances from H-1 of hexosamines was probably due to two separate conformers of the acetamido group caused by N-methylation. The complexity disappeared upon reduction with LiAlH4. The chemical shifts and coupling constants were characteristic for the configuration of the glycosidic bond, the type of monomer, and in part for its location in the chain. At present, spectra may be recorded from 200-μg samples. It is concluded that the good quality and resolution obtained make this technique an alternative method to the presently used enzymatic degradation for establishing anomeric structure of glycosphingolipids.  相似文献   

10.
The multifunctional low density lipoprotein receptor-related protein/α2-macroglobulin receptor (LRP) binds and degrades several ligands involved in protease and lipoprotein metabolism. We previously reported that nickel (Ni2+) specifically inhibits the binding of activated α2-macroglobulin (α2M*) at 4°C to LRP and had no effect on the binding of other ligands to the receptor (Hussain et al. (1995) Biochem. 34, 16074–16081). In the current investigation, we have examined the effect of Ni2+ on the catabolism of 125I-labeled α2M*, receptor-associated protein (RAP) and lactoferrin at physiologic temperatures by fibroblasts. Nickel completely inhibited the degradation of α2M* over a wide range of concentrations (0.3–2.4 nM); 50% inhibition for the degradation of 1.2 nM α2M* was observed at 0.5 mM Ni2+. Furthermore, nickel inhibited the binding, internalization and degradation of 125I-α2M* in a dose- and time- dependent manner. In contrast, the degradation of several concentrations of 125I-RAP by fibroblasts was not affected by different amounts of Ni2+ for various times. Similarly, Ni2+ did not inhibit the degradation of lactoferrin either before or after treating the cells with heparitinase to remove cell-surface proteoglycans. The degradation of lactoferrin was, however, inhibited by the RAP indicating that lactoferrin degradation was mediated by the LRP. These data suggest that Ni2+ is a specific inhibitor for the degradation of α2M*.  相似文献   

11.
The amino terminal sequences of the 4 caseins synthesized by translation of ovine mammary mRNAs in a wheat germ cell-free system have been investigated by automated Edman degradation. The 3 “calcium-sensitive” caseins (αs1, αs2 and β) and κ-casein were synthesized as precaseins with amino terminal hydrophobic extensions of 15 and 21 amino acid residues respectively, resembling “signal peptides” of other secretory proteins. The extra pieces of the 4 caseins, which start with a methionyl residue, end with an alanyl residue which may be one of the signals recognized by the mammary membrane-bound enzyme responsible for the specific cleavage of precaseins. The amino terminal extensions of αs1, αs2 and β-caseins show a high degree of homology suggesting that they have derived from a common ancestor.  相似文献   

12.
Human liver microsomes catalyze an efficient 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol. The hydroxylation is involved in a minor, alternative pathway for side-chain degradation in the biosynthesis of cholic acid. The enzyme responsible for the microsomal 25-hydroxylation has been unidentified. In the present study, recombinant expressed human P-450 enzymes have been used to screen for 25-hydroxylase activity towards 5β-cholestane-3α,7α,12α-triol. High activity was found with CYP3A4, but also with CYP3A5 and to a minor extent with CYP2C19 and CYP2B6. Small amounts of 23- and 24-hydroxylated products were also formed by CYP3A4. The Vmax for 25-hydroxylation by CYP3A4 and CYP3A5 was 16 and 4.5 nmol/(nmol×min), respectively. The Km was 6 μM for CYP3A4 and 32 μM for CYP3A5. Cytochrome b5 increased the hydroxylase activities. Human liver microsomes from ten different donors, in which different P-450 marker activities had been determined, were incubated with 5β-cholestane-3α,7α,12α-triol. A strong correlation was observed between formation of 25-hydroxylated 5β-cholestane-3α,7α,12α-triol and CYP3A levels (r2=0.96). No correlation was observed with the levels of CYP2C19. Troleandomycin, a specific inhibitor of CYP3A4 and 3A5, inhibited the 25-hydroxylase activity of pooled human liver microsomes by more than 90% at 50 μM. Tranylcypromine, an inhibitor of CYP2C19, had very little effect on the conversion. From these results, it can be concluded that CYP3A4 is the predominant enzyme responsible for 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol in human liver microsomes.  相似文献   

13.
The substrate specificity of mammalian endo-β-N-acetylglucosaminidase was studied in detail by using rat liver enzyme. The enzyme hydrolytically cleaves the N,N′-diacetylchitobiose moiety of Manα1 → 6 (Manα1 → 3)Manβ1 → 4GlcNacβ1 → 4R in which R represents either GlcNac → Asn or N-acetylglucosamine. The enzyme can hardly act on the sugar chains with Fucα1 → 3 or 6GlcNac → Asn or N-acetylglucosaminitol as their R residues. The sugar chains substituted at C-3 and C-6 positions of the Manα1 → 6 residue and at C-2 position of the Manα1 → 3 residue by other sugars are also cleaved by the enzyme. The sugar chains substituted at C-4 position of the β-mannosyl residue and at C-2 position of the Manα1 → 6 residue by other sugars are hydrolyzed at one place lower rate. The specificity of the mammalian endo-β-N-acetylglucosaminidase indicates that the enzyme is responsible for the formation of most of the oligosaccharides excreted in the urine of patients with congenital exoglycosidase deficiencies and also explains why large amount of glycopeptides are excreted in the urine of fucosidosis patients.  相似文献   

14.
Reverse-phase HPLC was utilized to study the synthesis, properties, and reactions of the neoglycopeptides formed by reductive lactosylation of the lysine amino groups of a derivative of the immunostimulatory thymic polypeptide thymosin α1. During the reaction of Nα-formyldesacetylthymosin α1, a 28-amino acid polypeptide which contains four lysines, with lactose and sodium cyanoborohydride, over 40 intermediates and products were separated by HPLC and 14 of these partially characterized. Increasing levels of lactosylation reduced the elution time of the modified thymosin α1 derivatives in several HPLC buffer systems investigated. Furthermore, comparisons of mobilities of intact glucosyl- or lactosyl-Nα-formyldesacetylthymosin α1 showed that the main determinant of elution time was the total number of monosaccharide units per peptide molecule. HPLC analysis was also shown to be a useful tool for studying the susceptibility of neoglycopeptides to proteolytic degradation and will prove an aid to elucidation of the relative reaction rates of the individual thymosin α1 lysine residues. It is expected that the trends in peptide mobility described will generally apply to the behavior of naturally occurring glycopeptides and glycoproteins in reverse-phase HPLC.  相似文献   

15.
Reconstitution of Escherichia coli RNA polymerase was found to be markedly enhanced by DNA as well as by the σ subunit. Among discrete steps of subunit assembly, formation of the primary intermediate α2β complex and subsequent association of the complex with the β′ subunit are not affected by the presence of DNA and the σ subunit; the α2ββ′ complex thus formed, however, is virtually inactive and is subject to temperature-dependent activation by DNA and the σ subunit. The α2ββ′ complex is, therefore, a secondary intermediate in the sequence of enzyme formation, or a premature form of core enzyme.In the course of activation of the premature core complex, the subunit σ interacts with both the α2β complex and the β′ subunit; DNA acts in much the same way. The enzyme, reconstituted in the presence of DNA, is recovered attached to the DNA, added as an enhancer, and initiates RNA synthesis without prior release from the DNA. A limited number of unique DNA sites appear to be concerned with the enzyme maturation.  相似文献   

16.
α-Galacto-oligosaccharides (α-GOS) are produced by transgalactosylation reactions of α-galactosidase (α-Gal) or by conversion of raffinose family oligosaccharides by levansucrase. Similarly to β-GOS, α-GOS have the potential to mimic glycan receptors on eukaryotic cells and act as molecular decoys to prevent bacterial infection; however, data on transgalactosylation reactions of α-Gal remain scarce. The α-Gal gene sequence from Lactobacillus reuteri was cloned into an α-Gal negative strain of Lactococcus lactis. Transgalactosylation reactions were achieved using crude cell extracts with melibiose or raffinose as galactosyl donor and fucose, N-acetylglucosamine or lactose as galactosyl acceptor. The composition, sequence and most linkage types of α-GOS formed with acceptors saccharides were determined by liquid chromatography-tandem mass spectrometry. α-Gal of Lactobacillus reuteri formed (1?→?3)-, (1?→?4)- or (1?→?6)-linked α-GOS but exhibited a preference for formation of (1?→?6)-linkages. Fucose, N-acetylglucosamine and lactose were suitable galactosyl acceptors for α-Gal of L. reuteri, resulting in formation of (1?→?3)-, (1?→?4)- or (1?→?6)-linked hetero-oligosaccharides. By determining the structural specificity of α-Gal and increasing the variation of oligosaccharides produced by introducing alternative acceptor sugars, this work supports further studies to assess α-GOS pathogen adhesion prevention in mammalian hosts.  相似文献   

17.
The GC/MS detection is reported of over 30 compounds, in extracts of the endosperm and embryos from seeds of Cucurbita maxima. The compounds which were identified from reference spectra include: cis,trans-ABA; trans,trans-ABA; dihydrophaseic acid; IAA; GA4; GA12; GA13; GA25; GA39; GA43; GA49; ent-13-hydroxy-, ent-6α,7α-and ent-7α,13-dihydroxy-, and ent-6α,7α,13-trihydroxykaur-16-en-19-oic acids; ent-7α,16,17-trihydroxy- and ent-6α,7α,16,17-tetrahydroxy-kauran-19-oic acids, ent-6,7-seco-7-oxokauren-6,19-dioic acid and/or ent-6,7-secokauren-6,7,19-trioic acid, and 7β,12α-dihydroxykaurenolide. New compounds, the structures of which were deduced from GC/MS data, include: the 12α-hydroxy-derivatives of GA12, GA14, GA37 and GA4, and the 12β-hydroxy-derivatives of ent-7α-hydroxy- and ent-6α,7α-dihydroxykaurenoic acids.  相似文献   

18.
Nuclear genes essential for the biogenesis of the chloroplast cytochrome b 6 f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b 6 f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b 6 f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b 6 f complex in protecting photosystem 11 from light-induced degradation.  相似文献   

19.
The sugar specificity of Escherichia coli 346 and of the type-1 fimbriae isolated from this organism has been studied by quantitative inhibition of the agglutination of mannan-containing yeast cells. The best inhibitors of the agglutination by the bacteria were the oligosaccharides Manα1→6[Manα1→3]Manα1→6[Manα1→2Manα1→3]ManαOMe, Manα1→6[Manα1→3]Manα1→6[Manα1→3]ManαOMe and Manα1→3Manβ1→4GlcNAc, and the aromatic glycoside p-nitrophenyl α-d-mannoside, all of which were 20–30 times more inhibitory than methyl α-d-mannoside. The disaccharides Manα1→3Man, Manα1→2Man and Manα1→6Man, the tetrasaccharide Manα1→2Manα1→3Manβ1→4GlcNAc and the pentasaccharide Manα1→2Manα1→2Manα1→3Manβ1→4GlcNAc, were all poor inhibitors. A very good correlation was found between the relative inhibitory activity of the different sugars tested with intact bacteria and with the isolated fimbriae. Our findings show that the combining site of the E. coli lectin is an extended one, corresponding to the size of a trisaccharide, that it contains a hydrophobic region, and that it is in the form of a pocket on the surface of the lectin. The combining site fits best the structures found in short oli gomannosidic chains present in N-glycosidically linked glycoproteins.  相似文献   

20.
Sucrose density gradient centrifugation was employed to study the association of the α and β2 subunits of the enzyme tryptophan synthetase from Escherichia coli and Salmonella typhimurium. In both cases, the fully associated enzyme (α2β2) showed a sedimentation coefficient of 6.4 S, in agreement with the values reported by other workers for the E. coli enzyme. The substrate, l-serine, and the cofactor, pyridoxal phosphate, were required for complex formation in both cases. Generation of moderately high pressures by increasing the centrifuge speed from 39,000 rpm to 50,000 rpm was found to interfere with complex formation in both species at 5 °C. This effect was reversed by a temperature increase from 5 °C to 20 °C or by low concentrations of a nonpolar solvent, ethanol, at 5 °C. These results indicate that hydrophobic bonding plays an important role in the formation of the active tryptophan synthetase α2β2 complex. Monovalent and divalent cations also interfered with the formation of the α2β2 complex, indicating the possibility that ionic bonds are also involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号