共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural polysaccharides of the alginate family form gels in aqueous Ca2+-containing solutions by lateral association of chain segments. The effect of adding oligomers of alpha-l-guluronic acid (G blocks) to gelling solutions of alginate was investigated using rheology and atomic force microscopy (AFM). Ca-alginate gels were prepared by in situ release of Ca2+. The gel strength increased with increasing level of calcium saturation of the alginate and decreased with increasing amount of free G blocks. The presence of free G blocks also led to an increased gelation time. The gel point and fractal dimensionalities of the gels were determined based on the rheological characterization. Without added free G blocks the fractal dimension of the gels increased from df = 2.14 to df = 2.46 when increasing [Ca2+] from 10 to 20 mM. This increase was suggested to arise from an increased junction zone multiplicity induced by the increased concentration of calcium ions. In the presence of free G blocks (G block/alginate = 1/1) the fractal dimension increased from 2.14 to 2.29 at 10 mM Ca2+, whereas there was no significant change associated with addition of G blocks at 20 mM Ca2+. These observations indicate that free G blocks are involved in calcium-mediated bonds formed between guluronic acid sequences within the polymeric alginates. Thus, the added oligoguluronate competes with the alginate chains for the calcium ions. The gels and pregel situations close to the gel point were also studied using AFM. The AFM topographs indicated that in situations of low calcium saturation microgels a few hundred nanometers in diameter develop in solution. In situations of higher calcium saturation lateral association of a number of alginate chains are occurring, giving ordered fiber-like structures. These results show that G blocks can be used as modulators of gelation kinetics as well as local network structure formation and equilibrium properties in alginate gels. 相似文献
2.
Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation 总被引:2,自引:0,他引:2
Hoesli CA Raghuram K Kiang RL Mocinecová D Hu X Johnson JD Lacík I Kieffer TJ Piret JM 《Biotechnology and bioengineering》2011,108(2):424-434
Alginate has been used to protect transplanted pancreatic islets from immune rejection and as a matrix to increase the insulin content of islet progenitor cells. The throughput of alginate bead generation by the standard extrusion and external gelation method is limited by the rate of droplet formation from nozzles. Alginate bead generation by emulsion and internal gelation is a scaleable alternative that has been used with biological molecules and microbial cells, but not mammalian cells. We describe the novel adaptation of this process to mammalian cell immobilization. After optimization, the emulsion process yielded 90 ± 2% mouse insulinoma 6 (MIN6) cell survival, similar to the extrusion process. The MIN6 cells expanded at the same rate in both bead types to form pseudo‐islets with increased glucose stimulation index compared to cells in suspension. The emulsion process was suitable for primary pancreatic exocrine cell immobilization, leading to 67 ± 32 fold increased insulin expression after 10 days of immobilized culture. Due to the scaleability and broad availability of stirred mixers, the emulsion process represents an attractive option for laboratories that are not equipped with extrusion‐based cell encapsulators, as well as for the production of immobilized or encapsulated cellular therapeutics on a clinical scale. Biotechnol. Bioeng. 2011;108: 424–434. © 2010 Wiley Periodicals, Inc. 相似文献
3.
CD81 and CD9, members of the transmembrane-4 superfamily (TM4SF; tetraspanins), form extensive complexes with other TM4SF proteins, integrins, and other proteins, especially in mild detergents. In moderately stringent Brij 96 lysis conditions, CD81 and CD9 complexes are virtually identical to each other, but clearly distinct from other TM4SF complexes. One of the most prominent proteins within CD81 and CD9 complexes is identified here as FPRP, the 133-kDa prostaglandin F(2alpha) receptor regulatory protein. FPRP, a cell-surface Ig superfamily protein, associates specifically with CD81 or with CD81 and CD9, but not with integrins or other TM4SF proteins. In contrast to other CD81- and CD9-associating proteins, FPRP associates at very high stoichiometry, with essentially 100% of cell-surface FPRP on 293 cells being CD81- and CD9-associated. Also, CD81.CD9.FPRP complexes have a discrete size (<4 x 10(6) Da) as measured by gel permeation chromatography and remain intact after disruption of cholesterol-rich membrane microdomains by methyl-beta-cyclodextrin. Although CD81 associated with both alpha(3) integrin and FPRP in 293 cells, the alpha(3)beta(1).CD81 and CD81.CD9.FPRP complexes were distinct, as determined by immunoprecipitation and immunodepletion experiments. In conclusion, our data affirm the existence of distinct TM4SF complexes with unique compositions and specifically characterize FPRP as the most robust, highly stoichiometric CD81- and/or CD9-associated protein yet described. 相似文献
4.
Peters HP Koppert RJ Boers HM Ström A Melnikov SM Haddeman E Schuring EA Mela DJ Wiseman SA 《Obesity (Silver Spring, Md.)》2011,19(6):1171-1176
Addition of specific types of alginates to drinks can enhance postmeal suppression of hunger, by forming strong gastric gels in the presence of calcium. However, some recent studies have not demonstrated an effect of alginate/calcium on appetite, perhaps because the selected alginates do not produce sufficiently strong gels or because the alginates were not sufficiently hydrated when consumed. Therefore, the objective of the study was to test effects on appetite of a strongly gelling and fully hydrated alginate in an acceptable, low-viscosity drink formulation. In a balanced order crossover design, 23 volunteers consumed a meal replacement drink containing protein and calcium and either 0 (control), 0.6, or 0.8% of a specific high-guluronate alginate. Appetite (six self-report scales) was measured for 5 h postconsumption. Relevant physicochemical properties of the drinks were measured, i.e., product viscosity and strength of gel formed under simulated gastric conditions. Hunger was robustly reduced (20-30% lower area under the curve) with 0.8% alginate (P < 0.001, analysis of covariance), an effect consistent across all appetite scales. Most effects were also significant with 0.6% alginate, and a clear dose-response observed. Gastric gel strength was 1.8 and 3.8 N for the 0.6 and 0.8% alginate drinks, respectively, while product viscosity was acceptable (<0.5 Pa.s at 10 s(-1)). We conclude that strongly gastric-gelling alginates at relatively low concentrations in a low-viscosity drink formulation produced a robust reduction in hunger responses. This and other related studies indicate that the specific alginate source and product matrix critically impacts upon apparent efficacy. 相似文献
5.
《Enzyme and microbial technology》2006,38(1-2):265-272
Subtilisin was encapsulated within impact-resistant alginate granules produced by emulsification, internal gelation, and acetone extractive drying. The mechanical and controlled release properties of the granules were modified by adding to the alginate varying levels of formulation excipients, including titanium dioxide, polyvinyl alcohol, microcrystalline cellulose, starch and sucrose. Optimum protease activity and mass yields of 83 and 88%, respectively (mg active subtilisin/g granules), occurred for granules formulated with 3% alginate, 10% starch, 10% titanium dioxide, and 3% subtilisin. Mass losses occurred primarily during the gelation step. Maximum encapsulation efficiency is achieved by using higher molecular weight alginate, increasing the alginate concentration, and carefully controlling process temperature and pH. The strongest granules were obtained at the higher concentrations of medium-G or high-G alginate, while fastest granule dissolution was achieved when a lower concentration of alginate was used in combination with polyvinyl alcohol or microcrystalline cellulose as dispersants. Mechanical properties of alginate granules were found to be unaffected by the different cations employed in matrix gel formation. 相似文献
6.
Alginate, a copolymer of beta-D-mannuronic acid and alpha-L-guluronic acid and currently commercially produced from the marine brown algae, can also be biologically produced by bacteria such as Azotobacter vinelandii, A. chroococcum and several species of Pseudomonas. The ever-increasing applications of this polymer in the food and pharmaceutical sectors have led to continuing research interest aimed at better understanding the metabolic pathways, the physiological or biological function of this polymer, the regulation of its formation and composition, and optimising the microbial production process. These aspects are reviewed here, with particular attention to alginate formation in the soil bacterium A. vinelandii. In addition, the biotechnological and industrial applications of alginate are summarised. 相似文献
7.
The use of laboratory procedures is often inefficient for materialisation of recombinant therapeutic proteins in Escherichia coli (E. coli) for pre-clinical evaluation. Approaches such as scaling out shake flask cultivation can be laborious, inefficient and expensive. These inefficiencies can be compounded if the protein requires post-translational modification such as multimerisation. We previously used laboratory methods to produce the < 60 kDa, recombinant biotherapeutic, RB1. We were aware, a priori, that dimerisation of RB1 could double the molecular weight of the protein and increase its systemic retention in the human body by avoiding renal filtration. Here we modified RB1 by substituting a native residue for an unpaired cysteine, generating eRB1, in order to favour its dimerisation. Laboratory methods failed to achieve > 20% disulphide-bridged homodimerisation or monomer of sufficient purity to enable chemi-dimerisation. As such we established a set of high performance, bench-scale, unit operations for cultivation of E. coli cells expressing eRB1, the isolation of eRB1 inclusion bodies, refolding and disulphide-based dimerisation of ≥ 40% of total eRB1 and finally successful chemi-dimerisation of remaining monomeric eRB1. The establishment of scalable procedures can now enable future investigations of eRB1 and other < 60 kDa biologics for which significant bench-scale production is required for pre-clinical evaluation. 相似文献
8.
Cellesi F Weber W Fussenegger M Hubbell JA Tirelli N 《Biotechnology and bioengineering》2004,88(6):740-749
Fully synthetic polymers were used for the preparation of hydrogel beads and capsules, in a processing scheme that, originally designed for calcium alginate, was adapted to a "tandem" process, that is the combination a physical gelation with a chemical cross-linking.The polymers feature a Tetronic backbone (tetra armed Pluronics), which exhibits a reverse thermal gelation in water solutions within a physiological range of temperatures and pHs. The polymers bear terminal reactive groups that allow for a mild, but effective chemical cross-linking. Given an appropriate temperature jump, the thermal gelation provides a hardening kinetics similar to that of alginate. With slower kinetics, the chemical cross-linking then develops an irreversible and elastic gel structure, and determines its transport properties. In the present article this process has been optimized for the production of monodisperse, high elastic, hydrogel microbeads, and liquid-core microcapsules. We also show the feasibility of the use of liquid-core microcapsules in cell encapsulation. In preliminary experiments, CHO cells have been successfully encapsulated preserving their viability during the process and after incubation. The advantages of this process are mainly in the use of synthetic polymers, which provide great flexibility in the molecular design. This, in principle, allows for a precise tailoring of mechanical and transport properties and of bioactivity of the hydrogels, and also for a precise control in material purification. 相似文献
9.
Turbidity, structure, and rheological features during gelation via the Ugi multicomponent condensation reaction of semidilute solutions of alginate have been investigated at different polymer and cross-linker concentrations and reaction temperatures. The gelation time of the system decreased with increasing polymer and cross-linker concentrations, and a temperature rise resulted in a faster gelation. At the gel point, a power law frequency dependence of the dynamic storage modulus (G' proportional, variant omega(n)(')) and loss modulus (G' ' proportional, variant omega(n)(' ')) was observed for all gelling systems with n' = n' ' = n. By varying the cross-linker density at a fixed polymer concentration (2.2 wt %), the power law exponent is consistent with that predicted (0.7) from the percolation model. The value of n decreases with increasing polymer concentration, whereas higher temperatures give rise to higher values of n. The elastic properties of the gels continue to grow over a long time in the postgel region, and at later stages in the gelation process, a solidlike response is observed. The turbidity of the gelling system increases as the gel evolves, and this effect is more pronounced at higher cross-linker concentration. The small-angle neutron scattering results reveal large-scale inhomogeneities of the gels, and this effect is enhanced as the cross-linker density increases. The structural, turbidity, and rheological features were found to change over an extended time after the formation of the incipient gel. It was demonstrated that temperature, polymer, and cross-linker concentrations could be utilized to tune the physical properties of the Ugi gels such as structure, transparency, and viscoelasticity. 相似文献
10.
Field evidence for stoichiometric relationships between zooplankton and N and P availability in a shallow calcareous lake 总被引:1,自引:0,他引:1
1. According to stoichiometric theory, zooplankters have a species‐specific elemental composition. Daphniids have a relatively high phosphorus concentration in their tissues and copepods high nitrogen. Daphniids should, therefore, be more sensitive to phosphorus limitation and copepods more sensitive to nitrogen. A 2‐year study of a shallow marl lake in the west of Ireland investigated whether population fluctuations of the two dominant taxa, Daphnia spp. and the calanoid Eudiaptomus gracilis, were associated with the availability of phosphorus and nitrogen. 2. In accordance with stoichiometric predictions, Daphnia and Eudiaptomus reproduction had contrasting relationships with dietary phosphorus and nitrogen availability. Egg production by Daphnia was negatively associated with the ratio of dissolved inorganic nitrogen (DIN) : total phosphorus (TP) and the ratio of light to TP which was used as an indirect index for seston carbon (C) : phosphorus (P). Conversely calanoid egg production had a positive relationship with the DIN : TP ratio and was unrelated to the estimated C : P (light : TP) ratio. 3. Daphnia biomass was not, however, correlated with phosphorus availability, and neither was calanoid biomass correlated with nitrogen. The high ratio of DIN : TP when Daphnia dominated the zooplankton biomass and the low ratio when calanoids dominated, is consistent with Daphnia acting as a sink for phosphorus and calanoids as a sink for nitrogen and suggests consumer‐driven nutrient recycling. 相似文献
11.
N K Kella 《International journal of biological macromolecules》1989,11(2):105-112
Arachin forms a heat-reversible gel under certain experimental conditions. The minimal gelling concentration for this system is 7.25%. Above minimal gelling concentration calculation of thermodynamic parameters for gelation of arachin revealed a constant delta Hbonding (-1220 cal.mol-1) where delta Sbonding values varied with an increase in protein concentration (ranging from -4.01 e.u. at 7.5% to -3.48 e.u. at 10.0%). The main steps involved in the gelation phenomenon include thermal denaturation of arachin, partial aggregation of heat-denatured protein molecules, setting of protein solution and maturation of the gel formed. Gel maturation process follows first order kinetics and is characterized by a large positive delta G+(+) (22,030 cal.mol-1). Determination of delta H+(+) and delta S+(+) for this process revealed that mostly delta S+(+) (-62.9 e.u.) contributes to the large positive delta G+(+), thus decreasing the overall rate of gel maturation process. This large negative delta S+(+) value probably arises from a loss of entropy of protein molecules because of their increased involvement in gel network formation. The polymer gel network seems to be primarily contributed by a part of both arachin dodecameric and hexameric species. 相似文献
12.
New insights into the mechanism of gelation of alginate and pectin: charge annihilation and reversal mechanism 总被引:1,自引:0,他引:1
Studies have been undertaken on the binding of Mn2+ ions to two alginate samples of different mannuronate:guluronate ratios (M:G), a sample of low-ester amidated pectin and poly(acrylic acid) (PAA). The binding of Ca2+ ions has also been included for the latter for comparison. The binding curves showed an initial steep rise at low additions of Mn2+ or Ca2+ indicating that all of the ions were bound to the polymer chains with none remaining in solution. At higher additions, the binding curves showed a plateau region and the maximum amount bound, theta, was found to be 0.2, 0.2, 0.25, and 0.33 mol M(2+)/mol COO- for high M:G alginate, low M:G alginate, pectin, and PAA, respectively. The binding curves for Mn2+ and Ca2+ with PAA were superimposable. In all cases, theta was less than the stoichiometric equivalent and also less than predicted by Manning counterion condensation theory. The linear charge density, xi, for the polymers is 1.49, 1.55, 1.62, and 2.85, and it was found that at maximum binding the effective linear charge density, xi(effective), decreased to a value close to 1 in each case and not 0.5 as predicted from Manning's two-variable theory. The mobility of the PAA chains has been followed by electron spin resonance spectroscopy using nitroxide spin labels covalently attached to the polymer, and the gelation of the pectin and alginate samples has been monitored using small deformation oscillatory experiments. For PAA at maximum binding, it was noted that there was a loss of chain mobility and precipitation. For pectin and alginate, gelation occurred and the stoichiometric ratio for maximum binding corresponded to the stoichiometric ratio for the maximum in G'. Precipitation and gelation are attributed to the formation of polymer-metal complexes involving one or two carboxylate groups resulting in charge reversal or charge annihilation. 相似文献
13.
The changes in chain conformation which accompany Ca2+-induced gelation of alginate have been investigated by a combined circular dichroism (c.d.) and optical rotatory dispersion (o.r.d.) approach. C.d. changes in the carboxyl n→π* spectral region, arising predominantly from formation of calcium poly-l-guluronate junctions, were monitored for three alginates of widely differing block composition. The corresponding o.r.d. changes, calculated by Kronig-Kramers trnasform, were subtracted from the observed changes in o.r.d. on gelation, to “unmask” the changes in optical activity of the conformation-sensitive electronic transitions of the polysaccharide backbone. Contributions to the “residual” o.r.d. difference spectra from poly-l-guluronate, poly-d-mannuronate, and heteropolymeric chain-sequences were calculated by solution of simultaneous equations at each wavelength. Results for poly-guluronate sequences are in agreement with previous studies of alginate films by vacuum ultraviolet c.d., and with observed c.d. and o.r.d. changes on addition of calcium ions to homopolyguluronate segments in solution. The much greater changes in backbone optical activity calculated for polymannuronate and heteropolymeric chain-sequences, however, have no counterpart in the behaviour of these sequences in isolation. An explanation is proposed in terms of stretching of interconnecting sequences between calcium polyguluronate junctions in alginate gels, to give a more-extended chain conformation than in free solution. 相似文献
14.
R. Ramirez-Vargas A. Ordaz M. Carrión I. Y. Hernández-Paniagua F. Thalasso 《Biodegradation》2013,24(5):675-684
Respirometry consists in the measurement of the biological oxygen consumption rate under well-defined conditions and has been used for the characterization of countless biological processes. In the field of biotechnology and applied microbiology, several respirometry methods are commonly used for the determination of process parameters. Dynamic and static respirometry, which are based on oxygen measurements with or without continuous aeration, respectively, are the methods most commonly used. Additionally to several respirometry methods, different methods have also been developed to retrieve process parameters from respirometric data. Among them, methods based on model fitting and methods based on the injection of substrate pulse at increasing concentration are commonly used. An important question is then; what respirometry and data interpretation methods should be preferably used? So far, and despite a growing interest for respirometry, relatively little attention has been paid on the comparison between the different methods available. In this work, both static and dynamic respirometry methods and both interpretation methods; model fitting and pulses of increasing concentration, were compared to characterize an autotrophic nitrification process. A total of 60 respirometry experiments were done and exhaustively analysed, including sensitivity and error analyses. According to the results obtained, the substrate affinity constant (K S ) was better determined by static respirometry with pulses of increasing concentration and the maximum oxygen uptake rate (OUR ex.max ) was better determined by dynamic respirometry coupled to fitting procedure. The best method for combined K S and OUR ex.max determination was static respirometry with pulses of increasing concentration. 相似文献
15.
We have used three methods to measure the stoichiometry of the glucocorticoid receptor and the 90-kDa heat shock protein (hsp90) in L-cell glucocorticoid receptor complexes that were purified by immunoadsorption to protein A-Sepharose with an anti-receptor monoclonal antibody, followed by a minimal washing procedure that permits retention of receptor-associated protein. In two of the methods, receptor was quantitated by radioligand binding, and receptor-specific hsp90 was quantitated against a standard curve of purified hsp90, either on Coomassie blue stained SDS gels by laser densitometry or on Western blots by quantitative immunoblotting with 125I-labeled counterantibody. The stoichiometry values obtained by densitometry and immunoblotting are 7 and 6 mol of hsp90/mol of receptor, respectively. In a third method, which detects total receptor protein rather than just steroid-bound receptor, the ratio of hsp90 to receptor was determined by immunopurifying receptor complexes from [35S]methionine-labeled L cells, and the amount of 35S incorporated into receptor and hsp90 was corrected for the established methionine content of the respective proteins. In complexes from L cells which are labeled to steady state (48 h), the ratio of hsp90 to GR is 4:1. When immunoadsorbed receptor complexes are washed extensively with 0.5 M NaCl and 0.4% Triton X-100 in the presence of molybdate, the ratio of hsp90 to GR is 2:1. In addition to hsp90, preparations of [35S]methionine-labeled untransformed receptor complex also contain a 55-kDa protein that the conclusion that the untransformed L-cell glucocorticoid receptor exists in cytosol in a much larger heteromeric complex than considered to date.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
17.
Staphylokinase (SAK) is a therapeutic protein with promise for thrombolytic therapy of acute myocardial infarction. In this study, polyethylene glycol (PEG) aldehyde was used for N-terminal PEGylation of SAK to improve the pharmacological profiles of SAK. Due to the presence of the competitive PEGylation between the N terminus and the Lys residues, kinetic and stoichiometric analysis was carried out to investigate the process for the N-terminal PEGylation of SAK. To achieve this objective, size exclusion chromatography and tryptic peptide mapping were used to measure the PEGylation extent of SAK molecule and its specific amino acid residues, respectively. 相似文献
18.
Di Biase Erika Lunghi Giulia Fazzari Maria Maggioni Margherita Pomè Diego Yuri Valsecchi Manuela Samarani Maura Fato Pamela Ciampa Maria Grazia Prioni Simona Mauri Laura Sonnino Sandro Chiricozzi Elena 《Glycoconjugate journal》2020,37(3):329-343
Glycoconjugate Journal - It has been recently reported by our group that GM1-oligosaccharide added to neuroblastoma cells or administered to mouse experimental model mimics the neurotrophic and... 相似文献
19.
Gordon F. Leedale 《Archives of microbiology》1962,42(3):237-245
Summary Cells of Hyalophacus ocellatus are described which contain either a nuclear figure consisting of a double complement of highly condensed chromosomes arranged in pairs in the anterior half of the cell, or a huge posteriorly-placed nucleus consisting of long granular chromosomes which also show signs of pairing. These nuclear figures are quite unlike interphase nuclei or stages in mitosis and are thought to be stages in euglenoid meiosis.No evidence has been obtained for a sexual fusion of gametes or cells. Previous accounts of sexuality and autogamy in the Euglenineae are historically reviewed and critically discussed relative to the present observations.This paper is dedicated to Professor Dr. E. G. Pringsheim on the occasion of his 80th birthday, with gratitude both for his untiring advice on my research and for his friendship. 相似文献
20.
Romo R Hernández A Zainos A Brody C Salinas E 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2002,357(1424):1039-1051
Humans and monkeys have similar abilities to discriminate the difference in frequency between two consecutive mechanical vibrations applied to their fingertips. This task can be conceived as a chain of neural operations: encoding the two consecutive stimuli, maintaining the first stimulus in working memory, comparing the second stimulus with the memory trace left by the first stimulus and communicating the result of the comparison to the motor apparatus. We studied this chain of neural operations by recording and manipulating neurons from different areas of the cerebral cortex while monkeys performed the task. The results indicate that neurons of the primary somatosensory cortex (S1) generate a neural representation of vibrotactile stimuli which correlates closely with psychophysical performance. Discrimination based on microstimulation patterns injected into clusters of S1 neurons is indistinguishable from that produced by natural stimuli. Neurons from the secondary somatosensory cortex (S2), prefrontal cortex and medial premotor cortex (MPC) display at different times the trace of the first stimulus during the working-memory component of the task. Neurons from S2 and MPC appear to show the comparison between the two stimuli and correlate with the behavioural decisions. These neural operations may contribute to the sensory-discrimination process studied here. 相似文献