首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although 1,6-anhydro-3,4-dideoxy-,β-d-glycero-hex-3-enopyranos-2-ulose (2) is produced by the acid-catalyzed pyrolysis of both cellulose and 1,6-anhydro-β-d-glucopyranose (1), data presented here show that the principal mechanism of its formation in the pyrolysis of cellulose is not via 1. Furthermore, the data provide evidence that 1 itself is not a primary product of cellulose pyrolysis, so that the principal mechanism of its formation must involve a precursor as yet unidentified.  相似文献   

2.
1-O-Tosyl-d-glucopyranose derivatives having a nonparticipating benzyl group at O-2 have been shown to react rapidly in various solvents with low concentrations of alcohols, either methanol or methyl 2,3,4-tri-O-benzyl-α-d-glucopyranoside. The stereospecificity of the glucoside-forming reaction could be varied from 80% of β to 100% of α anomer by changing the solvent or modifying the substituents on the 1-O-tosyl-d-glucopyranose derivative. 2,3,4-Tri-O-benzyl-6-O-(N-phenylcarbamoyl)-1-O-tosyl-α-d-glucopyranose in diethyl ether gave a high yield of α-d-glucoside. Kinetic measurements of reaction with various alcohols (methanol, 2-propanol, and cyclohexanol) show a high rate even at low concentrations of alcohol, and give some insight into the reaction mechanism. The high rate and stereoselectivity of their reaction suggest that the 1-O-tosyl-d-glucopyranose derivatives may be used as reagents for oligosaccharide synthesis.  相似文献   

3.
The dehydration of d-mannose and the demethanolization of methyl-α-d-mannopyranoside (MαMP) or methyl-α-d-mannofuranoside (MαMF) were examined using microwave-assisted heating for a 3-min irradiation at temperature from 120 to 280 °C in ordinary or dry sulfolane without any catalyst. The microwave-assisted heating of MαMP and MαMF smoothly proceeded to selectively afford the anhydromannoses, 1,6-anhydro-β-d-mannopyranose (AMP) and 1,6-anhydro-β-d-mannofuranose (AMF), respectively, in high yields. For MαMP in ordinary sulfolane at 240 °C, AMP was selectively obtained in the AMF:AMP ratio of 4:96, whereas AMF was the major product at the AMF:AMP ratio of 97:3 from MαMF in dry sulfolane at 220 °C.  相似文献   

4.
The effect of phenols on the hydrolysis of substituted phenyl β-d-gluco- and β-d-xylo-pyranosides by β-d-glucosidase from Stachybotrys atra has been investigated. Depending on the glycon part of the substrate and on the phenol substituent, the hydrolysis is either inhibited or activated. With aryl β-d-xylopyranosides, transfer of the xylosyl residue to the phenol, with the formation of new phenyl β-d-xylopyranosides, is observed. With aryl β-d-glucopyranosides, such transfer does not occur when phenols are used as acceptors, but it does occur with anilines. A two-step mechanism, in which the first step is partially reversible, is proposed to explain these observations. A qualitative analysis of the various factors determining the overall effect of the phenol is given.  相似文献   

5.
1,4:3,6-dianhydro-α-d-glucopyranose (1) was formed, together with 1,6-anhydro-3,4-dideoxy-β-d-glycero-hex-3-enopyranos-2-ulose (levoglycosenone, 2) and levoglucosan (4), on acid-catalyzed pyrolysis of d-glucose, amylopectin, and cellulose. Pyrolysis of 1 in the presence of acid provided significant quantities of 2, indicating that 1 can act as a pyrolytic precursor of 2. A pyrolysis product from cellulose previously considered to be 1,6-anhydro-3-deoxy-β-d-erythro-hex-3-enopyranose (12) was shown to be dianhydride 1.  相似文献   

6.
Methyl α-d-mannopyranoside (1 mole) reacts with 2,2-dimethoxypropane (1 mole), to give the 4,6-O-isopropylidene derivative (2) which rearranges to the 2,3-O-isopropylidene derivative (4). Compound4 can also be prepared by graded hydrolysis of methyl 2,3:4,6-di-O-isopropylidene-α-d-mannopyranoside. Successive benzoylation, oxidation, and reduction of4 provides a useful route to a number ofd-talopyranoside compounds. Methyl α-d-mannofuranoside (1 mole) reacts with 1–2 moles of 2,2-dimethoxypropane to give the 5,6-O-isopropylidene derivative (16) in 90% yield.  相似文献   

7.
The conformational behaviour of a cyclic disaccharide, di-β-d-glucopyranose 1,6′:1′,6-dianhydride hexaacetate, has been investigated. Because this molecule can exist only with the glucose rings in the unusual flexible forms, such conformational parameters as pseudorotation phase-angles have been used. Within a given number of approximations, the conformational space available for the whole system can be explored by considering only one two-dimensional map. Detailed investigations have shown that three stable conformations may be proposed. Among these, two correspond to minima found in the solid state. In one form, the six-membered rings adopt a boat conformation, whereas a skew conformation is found for the other form. However, these two conformations cannot be considered to be unique models of the conformation in solution; they both produce sets of proton-proton coupling-constants inconsistent with observed n.m.r.-spectroscopic results. At least the third form, having the six-membered rings in skew conformations, has to be taken into account. Deviations from coupling constants-molecular conformation relationships are thought to originate from ring strain.  相似文献   

8.
9.
The rate constants for the hydrolysis of six alkyl and four aryl β-d-xylofuranosides in aqueous perchloric acid at various temperatures have been measured. The effects of varying the aglycon structure on the hydrolysis rate are interpreted in terms of two concurrent reactions. Either, the substrate, protonated on the glycosidic oxygen atom, undergoes a rate-limiting heterolysis to form a cyclic oxocarbonium ion, or, an initial rapid protonation of the ring oxygen is followed by a unimolecular cleavage of the five-membered ring, all subsequent reactions being fast. It is suggested that xylofuranosides having strongly electron-attracting aglycon groups react mainly by the former pathway, whereas the latter is more favourable for substrates having electron-repelling aglycon groups. The negative entropies of activation obtained with the latter compounds are attributed to the rate-limiting opening of the five-membered ring. The rate variations of the hydrolyses of alkyl β-d-xylofuranosides in aqueous perchloric acid-methyl sulfoxide mixtures are interpreted as lending further support for the suggested chance in mechanism.  相似文献   

10.
Methods for the synthesis of 3-O-(α-d-mannopyranosyl)-d-mannose and 2-(4-aminophenyl)ethyl 3-O-(α-d-mannopyranosyl)-α-d-mannopyranoside have been investigated by a number of sequences. Glycosidations with 2,3-di-O-acetyl-4,6-di-O-benzyl-d-mannopyranosyl and 2-O-benzoyl-3,4,6-tri-O-benzyl-d-mannopyranosyl p-toluenesulfonates were found to give better yields than the Helferich modification, the use of a peracylated d-mannopyranosyl halide, or the use of triflyl leaving group. Only the α anomer was obtained. Factors influencing glycosidation reactions are discussed. A mercury(II) complex was used for selective 2-O-acylation of 4,6-di-O-benzyl-α-d-mannopyranosides. A disaccharide—protein conjugate was prepared by the isothiocyanate method.  相似文献   

11.
Reaction of 1,2-O-cyclopentylidene-α-d-glucofuranurono-6,3-lactone (2) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (1) gave 1,2-O-cyclopentylidene- 5-O-(2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (3, 45%) and 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (4, 38%). Reduction of 3 and 4 with lithium aluminium hydride, followed by removal of the cyclopentylidene group, afforded 5-O-α-(9) and -β-d-glucopyranosyl-d-glucofuranose (12), respectively. Base-catalysed isomerization of 9 yielded crystalline 5-O-α-d-glucopyranosyl-d-fructopyranose (leucrose, 53%).  相似文献   

12.
Reaction of 2,3,5-tri-O-benzyl-d-ribofuranosyl bromide with mercuric cyanide afforded an anomeric mixture of cyanides (3) and 1,4-anhydro-2,3,5-tri-O-benzyl-d-erythro-pent-1-enitol (6). Reduction of 3 with lithium aluminum hydride gave a pair of epimeric amines (4 and 5), which were separated by chromatography and characterized by conversion into the known 2,5-anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-ureido-d-allitol (7) and its epimer, 2,5-anhydro-3,4,6-tri-O-benzyl-1-deoxy-1-ureido-d-altritol (8). Compound 8 and its precursor were used for the synthesis of various “α-homonucleosides”.  相似文献   

13.
2-Deoxy-β-d-lyxo-hexose (2-deoxy-β-d-galactose, C6H12O5), Mr = 164.16, is monoclinic, P21 with a = 9.811(1), b = 6.953(1), c = 5.315(1) Å, β = 91.58(2)°, V = 362.5(1) Å3, Z = 2, and Dx = 1.504 g.cm?3. The structure was solved by direct methods (MULTAN 79) and refined to R = 0.032 for 800 observed reflections. Each hydroxyl oxygen, acting both as donor and acceptor, is involved in a hydrogen-bonding system, which consists of infinite helical chains around the crystallographic screw axes. Moreover, weak interactions allow the incorporation of the ring-oxygen atoms into an interconnected network.  相似文献   

14.
The koenigs-Knorr glycosylation of 4,6-O-ethylidene-1,2-O-isopropylidene-3-O-(2,3-O-isopropylidene-α-l-rhamnopyranosyl)-α-d-galactopyranose (3) by 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide (10), as well as Helferich glycosylations of 3 by tetra-O-acetyl-α-d-mannopyranosyl and -α-d-glucopyranosyl bromides, proceeded smoothly to give high yields of trisaccharide derivatives (12, 16, and 17). An efficient procedure for the transformation of 12, 16, and 17 into the α-deca-acetates of the respective trisaccharides has been developed. Zemplén de-acetylation then afforded the title trisaccharides in yields of 53, 52, and 62 %, respectively, from 3. A new route to 1,4,6-tri-O-acetyl-2,3-O-carbonyl-α-d-mannopyranose is suggested.  相似文献   

15.
2,6-Anhydro-3-deoxy-aldehydo-d-lyxo-hept-2-enose (7) 2,6-anhydro-3-deoxy-d-lyxo-hept-2-enitol (8) were synthesized as half-chair analogs of d-galactal (1). As 1 is a strong inhibitor of, as well as a substrate for, β-d-galactosidase from Escherichia coli, the same properties were expected for 7 and 8; however, both were ineffective. This result, together with those of other authors, allows speculative conclusions on the tight binding of 1 to the enzyme only, when water or an alcohol is bound as a co-substrate.  相似文献   

16.
Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside with lithium dimethyl cuprate gave methyl 2,5-dideoxy-2-C-methyl-α-d-arabinofuranoside (54% yield) and methyl 3,5-dideoxy-3-C-methyl-α-d-xylofuranoside (10%). The former was converted into its 3-O-acetyl and 3-O-benzyl derivatives, which, upon acid hydrolysis, afforded 3-O-acetyl- and 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinofuranose in 60–75% overall yield. Treatment of the 3-O-benzyl compound with ethanethiol in the presence of trifluoromethanesulfonic acid afforded 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinose diethyl dithioacetal (20%) and ethyl 3-O-benzyl-2,5-dideoxy-2-C-methyl-1-thio-α-d-arabinoside (73%). The former, which was also available from the latter by equilibration in acidic ethanethiol, was acetylated at O-4 and the product converted into the corresponding dimethyl acetal (85% overall yield). This compound was, after debenzylation, hydrolyzed with acid, to provide 4-O-acetyl-2,5-dideoxy-2-C-methyl-d-arabinose in 70% overall yield.  相似文献   

17.
As part of a program to synthesize the ceramide trisaccharide (1) related to Fabry's disease, methyl 4-O-(4-O-α-d-galactopyranosyl-β-d-galactopyranosyl)-β-d-glucopyranoside (12) was prepared. Methyl β-lactoside (2) was converted into methyl 4-O-(4,6-O-benzylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (4). Methyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (7) was synthesized from 4 through the intermediates methyl 2,3,6-tri-O-benzoyl-4-O-(4,6-O-benzylidene-2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (5) and methyl 2,3,6-tri-O-benzoyl-4-O-(2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (6). The halide-catalyzed condensation of 7 with 2,3,4,6-tetra-O-benzyl-d-galactopyranosyl bromide (8) gave methyl 2,3,6-tri-O-benzoyl-4-O-[2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)- β-d-galactopyranosyl]-β-d-glucopyranoside (10). Stepwise deprotection of 10 led to 12, the methyl β-glycoside of the trisaccharide related to Fabry's disease.  相似文献   

18.
The structure of neoschaftoside is shown for the first time to be 6-C-β-d-glucopyranosyl-8-C-β-l-arabinopyranosylapigenin. A variety of chemical and spectroscopic techniques are involved.  相似文献   

19.
20.
The intestinal transport of three actively transported sugars has been studied in order to determine mechanistic features that, (a) can be attributed to stereospecific affinity and (b) are common.The apparent affinity constants at the brush-border indicate that sugars are selected in the order, β-methyl glucose >d-galactose > 3-O-methyl glucose, (the Km values are 1.23, 5.0 and 18.1 mM, respectively.) At low substrate concentrations the Kt values for Na+ activation of sugar entry across the brush-border are: 27.25, and 140 mequiv. for β-methyl glucose, galactose and 3-O-methyl glucose, respectively. These kinetic parameters suggest that Na+, water, sugar and membrane-binding groups are all factors which determine selective affinity.In spite of these differences in operational affinity, all three sugars show a reciprocal change in brush-border entry and exit permeability as Ringer [Na] or [sugar] is increased. Estimates of the changes in convective velocity and in the diffusive velocity when the sugar concentration in the Ringer is raised reveal that with all three sugars, the fractional reduction in convective velocity is approximately equal to the (reduction of diffusive velocity)2. This is consistent with the view that the sugars move via pores in the brush-border by convective diffusion.Theophylline reduces the serosal border permeability to β-methyl glucose and to 3-O-methyl glucose relatively by the same extent and consequently, increases the intracellular accumulation of these sugars.The permeability of the serosal border to β-methyl glucose entry is lower than permeability of the serosal border to β-methyl glucose exit, which suggests that β-methyl glucose may be convected out of the cell across the lateral serosal border.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号