首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general method for the preparation of 2′-azido-2′-deoxy- and 2′-amino-2′-deoxyarabinofuranosyl-adenine and -guanine nucleosides is described. Selective benzoylation of 3-azido-3-deoxy-1,2-O-isopropylidene-α-d-glucofuranose afforded 3-azido-6-O-benzoyl-3-deoxy-1,2-O-isopropylidene-α-d-glucofuranose (1). Acid hydrolysis of 1, followed by oxidation with sodium metaperiodate and hydrolysis by sodium hydrogencarbonate gave 2-azido-2-deoxy-5-O-benzoyl-d-arabinofuranose (3), which was acetylated to give 1,3-di-O-acetyl-2-azido-5-O-benzoyl-2-deoxy-d-arabinofuranose (4). Compound 4 was converted into the 1-chlorides 5 and 6, which were condensed with silylated derivatives of 6-chloropurine and 2-acetamido-hypoxanthine. The condensation reaction gave α and β anomers of both 7- and 9-substituted purine nucleosides. The structures of the nucleosides were determined by n.m.r. and u.v. spectroscopy, and by correlation of the c.d. spectra of the newly prepared nucleosides with those published for known purine nucleosides.  相似文献   

2.
Addition of ethyl isocyanoacetate in strongly basic medium to the glycosuloses 1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranos-3-ulose (1) and 1,2-O-isopropylidene-5-O-trityl-d-erythro-pentos-3-ulose (2) gave the unsaturated derivatives (E)- and (Z)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (3 and 4), and (E)-3-deoxy-3-C-ethoxycarbonyl(formylamino)methylene-1,2-O-isopropylidene-5-O-trityl-α-d-ribofuranose (5). In weakly basic medium, ethyl isocyanoacetate and 1 gave 3-C-ethoxycarbonyl(formylamino)methyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (12) in good yield. The oxidation of 3 and 4 with osmium tetraoxide to 3-C-ethoxalyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (17), and its subsequent reduction to 3-C-(R)-1′,2′-dihydroxyethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (18) and its (S) epimer (19) and to 3-C-(R)-ethoxycarbonyl(hydroxy)methyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose (21) and its (S) epimer (22) are described. Hydride reductions of 12 yielded the corresponding 3-C-(1-formylamino-2-hydroxyethyl), 3-C-(2-hydroxy-1-methylaminoethyl), and 3-C-(R)-ethoxycarbonyl(methylamino)methyl derivatives (13, 14 and 16). Catalytic reduction of 3 and 4 yielded the 3-deoxy-3-C-(R)-ethoxycarbonyl-(formylamino)methyl derivative 6 and its 3-C-(S) epimer. Further reduction of 6 gave 3-deoxy-3-C-(R)-(1-formylamino-2-hydroxyethyl)-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (23) which was deformylated with hydrazine acetate to 3-C-(R)-(1-amino-2-hydroxyethyl)-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (24). The configurations of the branched-chains in 16, 21, and 22 were determined by o.r.d.  相似文献   

3.
Three different approaches starting from 1,2-O-isopropylidene-α-d-glucofuranose were tested for the synthesis of daunosamine hydrochloride (24), the sugar constituent of the antitumor antibiotics daunomycin and adriamycin. The third route, affording 24 in ~5% overall yield in 11 steps, constitutes a useful, preparative synthesis, 3,5,6-Tri-O-benzoyl-1,2-O-isopropylidene-α-d-glucofuranose was converted via methyl 2,3-anhydro-β-d-mannofuranoside into methyl 2,3:5,6-dianhydro-α-l-gulofuranoside, the terminal oxirane ring of which was split selectively on reduction with borohydride, to afford methyl 2,3-anhydro-6-deoxy-α-l-gulofuranoside (31). Compound 31 was converted into methyl 2,3-anhydro-5-O-benzyl-6-deoxy-α-l-gulofuranoside, which was selectively reduced at C-2 on treatment with lithium aluminum hydride, affording methyl 5-O-benzyl-2,6-dideoxy-α-l-xylo-hexofuranoside. Subsequent mesylation, and replacement of the mesoloxy group by azide, with inversion, afforded methyl 3-azido-5-O-benzyl-2,6-dideoxy-α-l-lyxo-hexofuranoside, which could be converted into either 24 or methyl 3-acetamido-5-O-acetyl-2,3,6-trideoxy-α-l-lyxo-hexofuranoside, which can be used as a starting material for the synthesis of daunomycin analogs.  相似文献   

4.
《Carbohydrate research》1987,161(1):65-73
An improved procedure for the preparation of 1,2-O-isopropylidene-β-d-fructofuranose and its 6-pyruvoylation is described. Photolysis of this ester in benzene furnished 5,6-O-isopropylidene-β-d-lyxo-5-ulofuranose, characterised as the O-methyloxime diacetate. Similary, photochemical oxidation of 1 1,2-O-isopropylidene-6-O-pyruvoyl-α-d-glucofuranose gave 1,2-O-isopropylidene-α-d-lgluco-hexodialo1,4:6,3-difuranose in excellent yield.  相似文献   

5.
During the chromatographic separation of 3-S-acetyl-1,2-O-isopropylidene-3-thio-α-d-allofuranose on silica gel, a migration of the acetyl group from S to O was observed to give 6-O-acetyl-1,2-O-isopropylidene-3-thio-α-d-allofuranose, whereas 3-S-acetyl-6-O-benzoyl-1,2-O-isopropylidene-3-thio-α-d-allofuranose gave 5-O-acetyl-6-O-benzoyl-1,2-O-isopropylidene-3-thio-α-d-allofuranose. No acetyl migration was observed, however, in the case of 3-O-acetyl-1,2-O-isopropylidene-α-d-allofuranose.  相似文献   

6.
The formation of (4R)-4-carbamoyl-4-[(4R)-3-O-benzyl-1,2-O-isopropylidene-β-l-threofuranos-4-C-yl]-oxazolidin-2-one instead of expected imidazolidin-2,4-dione (hydantoin) derivative from 5-amino-5-cyano-5-deoxy-3-O-benzyl-1,2-O-isopropylidene-α-d-glucofuranose or 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose under Bucherer-Bergs reaction conditions is reported. Single crystal X-ray diffraction data revealed that 3T4 is the prefered conformation for the furanose ring, while E2 and 2T1 conformations are adopted by the 1,3-dioxolane and 2-oxazolidinone five-membered rings, respectively.  相似文献   

7.
The reaction of 1,2-O-isopropylidene-α- d-glucofuranose with sulfuryl chloride at 0° and at 50° afforded 6-chloro-6-deoxy-1,2-O-isopropylidene-α- d-glucofuranose 3,5-bis(chlorosulfate) ( 3) and 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β- l-idofuranose 3-chlorosulfate ( 7, not characterised), respectively. Dechlorosulfation of 3 afforded the hydroxy derivative, whereas treatment of 3 with pyridine gave the 3,5-(cyclic sulfate). Dechlorosulfation of 7 afforded 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β- l-idofuranose which, on acid hydrolysis, was converted into 3,6-anhydro-5-chloro-5-deoxy- l-idofuranose. 5-Chloro-5-deoxy-α- l-idofuranosidurono-6,3-lactone and 5-chloro-5-deoxy-β- l-idofuranurono-6,3-lactone derivatives were also prepared.  相似文献   

8.
The reaction of 1,2:5,6-di-O-isopropylidene-3-C-methylene-α-D-ribo-hexofuranose (4) with mercuric azide in hot 50% aqueous tetrahydrofuran yielded, after reductive demercuration, 3-azido-3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-α-D-glucofuranose (5). Partial, acid hydrolysis of5 afforded the diol7, which gave 3-azido-3-deoxy-1,2-O-isopropylidene-5,6-di-O-methanesulphonyl-3-C-methyl-α-D-glucofuranose (8) on sulphonylation. On hydrogenation over a platinum catalyst and N-acetylation, the dimethanesulphonate 8 furnished 3,6-acetylepimino-3,6-dideoxy-1,2-O-isopropylidene-5-O-methanesulphonyl-3-C-methyl-α-D-glucofuranose (9), which was also prepared by an analogous sequence of reactions on 3-azido-3-deoxy-1,2-O-isopropylidene-5-O-methanesulphonyl-3-C-methyl-6-O-toluene-p-sulphonyl-α-D-glucofuranose (13). The formation of the N-acetylepimine 9 establishes the D-gluco configuration for 5.1,2-O-Isopropylidene-3-C-methylene-α-D-ribo-hexofuranose (20) reacted with mercuric azide in aqueous tetrahydrofuran at ≈85° to give 3,6-anhydro-1,2-O-isopropylidene-3-C-methyl-α-D-glucofuranose (22) as a result of intramolecular participation by the C-6 hydroxyl group in the initial intermediate.  相似文献   

9.
Condensation of dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso-α-D-glucopyranosyl chloride (1) with 1,2-O-isopropylidene-α-D-glucofuranurono-6,3-lactone (2) gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (3). Benzoylation of the hydroxyimino group with benzoyl cyanide in acetonitrile gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-benzoyloxyimino-2-deoxy-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (4). Compound 4 was reduced with borane in tetrahydrofuran, yielding 5-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1,2-O-isopropylidene-α-D-glucofuranose (5), which was isolated as the crystalline N-acetyl derivative (6). After removal of the isopropylidene acetal, the pure, crystalline title compound (10) was obtained.  相似文献   

10.
《Carbohydrate research》1987,166(2):211-217
6-O-Benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-oct-7-ynopyranose reacted with tributyltin hydride to afford (Z-6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-8-(tributylstannyl)-l-glycero-α-d-galacto-oct-7-enopyranose, which was subsequently isomerized to the E-olefin 4. Replacement of the tributyltin moietey with lithium in 4 afforded the vinyl anion which reacted with 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-pentodialdo-1,4-furanose, furnishing 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-heptopyranos-7-ylidene] -60-deoxy-1,2-O-isopropylidene-α-d-gluco- (6) and -β-l-ido-furanose (7) in yields of ∼70 or ∼87% (depending on the temperature of the reaction). The configurations of the new chiral centers in 6 and 7 were determined by their conversion into 3-O-benzyl-1,2-O-isopropylidene-α-d-gluco- and -β-l-ido-furanose, respectively. Oxidation of 6 and 7 gave the same enone, 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto- heoptopyranos-7-ylidene]-6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose.  相似文献   

11.
Nucleophilic Michael-type additions to aldohexofuranoid 3-C-methylene derivatives, namely, 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-nitromethylene-α-d-ribo-hexofuranose and 3-C-[cyano(ethoxycarbonyl)methylene]-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranose employing phase-transfer catalysis, afforded novel gem-di-C-substituted sugars. The conversion of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl-α-d-allo-hexofuranose into a 3-C-hydroxymethyl-3-C-methyl derivative with titanium trichloride, and that of the nitromethyl groups of 3-deoxy-1,2:5,6-di-O-isopropylidene-3,3-di-C-nitromethyl-α-d-ribo-hexofuranose, and 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl- and -3-C-nitromethyl-α-d-allo-hexofuranose into cyano groups with phosphorus trichloride in pyridine is also described.  相似文献   

12.
Condensation of 1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranos-3-ulose (1) with diethyl cyanomethylphosphonate afforded a mixture of the cis- and trans-3-cyanomethylene-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-xylo-hexofuranoses (2) in 80% yield. Catalytic reduction of 2 yielded 3-C-cyanomethyl-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-gulofuranose (4) exclusively. Palladium and hydrogen was found to rearrange the exocyclic double bond of 2 to give the 3,4-ene (3). Catalytic reduction of 3 also proceeded stereospecifically to yield 4. Selective hydrolysis of 4 yielded the diol 5, which was cleaved with periodate and the product reduced with sodium borohydride to afford crystalline 3-C-cyanomethyl-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (6) in 87% yield. Catalytic reduction of the latter with hydrogen and platinum in the presence of acetic anhydride and ethanol gave the crystalline l-amino sugar, 3-C-(2-acetamidoethyl)-3-deoxy-1,2-O-isopropylidene-β-l-lyxofuranose (7) in 92% yield.  相似文献   

13.
Various 1-nitroalkanes reacted with methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside to yield methyl 6-alkyl-6-deoxy-2,3-O-isopropylidene-6-nitro-β-d-ribofuranosides in 64–79% yield. Similarly, nitromethane and 1-nitropentane reacted with N6-benzoyl-2′,3′-O-isopropylideneadenosine-5′-aldehyde, to yield the corresponding 9-[6-alkyl-6-deoxy-2,3-O-isopropylidene-6-nitro-α-l-talo(β-d-allo)furanosyl]-N6-benzoyladenines in 74 and 44% yield, respectively. The potential utility of this nitroalkane addition for the synthesis of nucleosides having a C-5′C-6′ bond is discussed.  相似文献   

14.
3-O-(6-O-Acetyl-2,3-anhydro-4-deoxy-α-l-ribo-hexopyranosyl)-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose has been synthesised and its monocrystal investigated by X-ray diffraction methods. The compound crystallises in the orthorhombic system, space group P212121, with cell constants a = 8.790(7), b = 11.678(4), and c = 21.457(10) Å. The intensity data were collected with a four-circle CAD-4 diffractometer. From a total of 1684 intensities, 1275 were of I > 2σI. The structure was solved by direct methods and refined by the full-matrix, least-squares procedure, resulting in R 0.057. The 4-deoxy-2,3-anhydropyranose ring is characterised by a sofa conformation (5E), the 1,2-O-isopropylidene ring has a hybrid conformation (E + T), and the 5,6-O-isopropylidene and the α-d-glucofuranose rings have twist (T) conformations. The φ and ψ torsion angles for the glycosidic linkage are 54(4)° and 29(4)°, respectively.  相似文献   

15.
[3+2] Cycloaddition of 5-azido-5-deoxy-1,2-O-isopropylidene-α-d-xylofuranose with 1,3-diphenyl-prop-3-enones, followed by oxidation of the intermediate triazolines in a tandem manner, led to the regioselective formation of 4-benzoyl-1-(5-deoxy-1,2-O-isopropylidene-α-d-xylofuranos-5-yl)-5-phenyl-1H-1,2,3-triazoles in moderate to good yields.  相似文献   

16.
Selective acid-catalysed methanolysis of 2,3,2′,3′-tetra-O-benzyl-4,6:4′,6′-di-O-benzylidene-α,α-trehalose yielded the monobenzylidene derivative, which was converted into the 4,6-dimesylate. Selective nucleophilic displacement of the primary sulphonyloxy group then gave 2,3-di-O-benzyl-6-deoxy-6-fluoro-4-O-mesyl-α-d-glucopyranosyl 2,3-di-O-benzyl-4,6-O-benzylidene-α-d-glucopyranoside. Removal of the protecting groups then yielded 6-deoxy-6-fluoro-α,α-trehalose. In addition, 6-deoxy-6-fluoro-4-O-mesyl-α,α-trehalose and a derivative of 4-chloro-4,6-dideoxy-6-fluoro-α-d-galactopyranosyl α-d-glucopyranoside were also prepared from the same substrate. Iodide displacement of 2,3-di-O-benzyl-4,6-di-O-mesyl-α-d-glucopyranosyl 2,3-di-O-benzyl-4,6-di-O-mesyl-α-d-glucopyranoside afforded the 6-iodide and 6,6′-di-iodide in yields of 31 and 36%, respectively. Similarly, the 6-azide and 6,6′-diazide were isolated in yields of 17 and 21%, respectively.  相似文献   

17.
Derivatives of 6-amino-6-deoxy-D-galactose-6-15N have been synthesized by reaction of the 6-deoxy-6-iodo (1) or 6-O-p-tolylsulfonyl derivative of 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose with potassium phthalimide-15N. The reaction of 1 also yielded an elimination product, 6-deoxy-1,2:3,4-di-O-isopropylidene-β-L-arabino-hex-5-enopyranose. The structures of the 6-amino-6-deoxy-D-galactose derivatives and their precursors were characterized by proton- and 13C-n.m.r. spectroscopy, with confirmation of the 13C assignments by selective proton decoupling. Selective broadening of the C-1, C-4, C-5, and C-6 resonances of 6-amino-6-deoxy-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose by low concentrations of cupric ion was observed, and studied by computerized measurements of the 13C linewidths. The application of this broadening to 13C-spectral assignments of amino sugar derivatives is indicated.  相似文献   

18.
Addition of ethyl isocyanoacetate to 3-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose in ethanolic sodium cyanide gave two oxazolines that were hydrolysed during chromatography to two isomeric ethyl 3-O-benzyl-6-deoxy-6-formamido-1,2-O-isopropylidene-heptofuranuronates. Similarly, 1,2-O-isopropyl-idene-3-O-methyl-α-D-xylo-pentodialdo-1,4-furanose gave the 3-O-methyl-heptofuranuronates 7 and 11. Reduction of 7 and 11 gave N-methylamino esters that exhibited Cotton effects from which the configurations at C-6 of 7 and 11 were deduced. The chiralities at C-5 of 7 and 11 were established by tetrahydropyranlation of 7 and 11, followed by consecutive treatment with bis(2-methoxyethoxy)aluminium hydride, periodate, sodium borohydride, and dilute acid, to give 1,2-O-isopropylidene-3-O-methyl-α-D-glucofuranose and its β-L-ido epimer, respectively. Attempts to methylate HO-5 of 7 and 11 resulted in elimination. On formylaminomethylenation (ethyl isocyanoacetate and potassium hydride in tetrahydrofuran), 3-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentodialdo-1,4-furanose and its 3-O-methyl-α-D-xylo epimer each gave (E)- and (Z)-mixtures of alkenes that were hydrogenated to give mixtures of 5,6-dideoxy-6-formamido-heptofuranuronates.  相似文献   

19.
Oxidation of 3,6-di-O-benzyl-1,2-O-isopropylidene-α-d-glucofuranose with pyridinium chlorochromate in the presence of molecular sieves, followed by conversion into the p-tolylsulfonylhydrazone, addition of methyl phenylphosphinate, and reduction with sodium borohydride, provided the key intermediate, namely, 5(R,S)-3,6-di-O-benzyl-5-deoxy-1,2-O-isopropylidene-5-C-[(methoxy)phenylphosphinyl]-α-d-xylo-hexofuranose, in 23% overall yield. Treatment of this compound with sodium dihydrobis(2-methoxyethoxy)aluminate, followed by the action of mineral acid and acetic anhydride, yielded the crystalline title compound, the structure of which was established on the basis of mass and 400-MHz, 1H-n.m.r. spectra. A general dependence of 2JPH values on the OPCH dihedral angles effectively served for assigning the configuration of C-1, C-5, and the ring-phosphorus atom of the present product and other such 5-C-phosphinylhexopyranoses.  相似文献   

20.
The reaction of p-nitrophenyl 2,3-O-isopropylidene-α-d-mannopyranoside and 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1-d]-2-oxazoline gave a crystalline, 6-O-substituted disaccharide derivative which, on de-isopropylidenation followed by saponification, produced the disaccharide p-nitrophenyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-mannopyranoside. Synthesis of methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-mannopyranoside was also accomplished by a similar reaction-sequence. The structures of these disaccharides have been established by 13C-n.m.r. spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号