首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Carbohydrate research》1985,140(1):111-120
Synergism between (1→4)-β-d-glucan cellobiohydrolase, endo-(1→4)-β-d-glucanases, and β-d-glucosidases of Sclerotium rolfsii for solubilization of native and amorphous celluloses is discussed. Besides synergism between cellobiohydrolase and endo-β-glucanases of S. rolfsii, a synergistic effect between endo-β-glucanases and β-glucosidases [which behaved rather as (1→4)-β-d-glucan glucohydrolases] was observed for solubilization of crystalline and amorphous celluloses. It seems that a cellobiohydrolase initiates the attack on crystalline cellulose and an endo-β-d-glucanase the attack on amorphous cellulose.  相似文献   

2.
The (1→4)-β-d-glucan glucohydrolase from Penicillium funiculosum cellulase was purified to homogeneity by chromatography on DEAE-Sephadex and by iso-electric focusing. The purified component, which had a molecular weight of 65,000 and a pI of 4.65, showed activity on H3PO4-swollen cellulose, o-nitrophenyl β-d-glucopyranoside, cellobiose, cellotriose, cellotetraose, and cellopentaose, the Km values being 172 mg/mL, and 0.77, 10.0, 0.44, 0.77, and 0.37 mm, respectively. d-Glucono-1,5-lactone was a powerful inhibitor of the action of the enzyme on o-nitrophenyl β-d-glucopyranoside (Ki 2.1 μm), cellobiose (Ki 1.95 μm), and cellotriose (Ki 7.9 μm) [cf.d-glucose (Ki 1756 μm)]. On the basis of a Dixon plot, the hydrolysis of o-nitrophenyl β-d-glucopyranoside appeared to be competitively inhibited by d-glucono-1,5-lactone. However, inhibition of hydrolysis by d-glucose was non-competitive, as was that for the gluconolactone-cellobiose and gluconolactone-cellotriose systems. Sophorose, laminaribiose, and gentiobiose were attacked at different rates, but the action on soluble O-(carboxymethyl)cellulose was minimal. The enzyme did not act in synergism with the endo-(1→4)-β-d-glucanase component to solubilise highly ordered cotton cellulose, a behaviour which contrasts with that of the other exo-(1→4)-β-d-glucanase found in the same cellulase, namely, the (1→4)-β-d-glucan cellobiohydrolase.  相似文献   

3.
The extracellular (1 → 3)-β-d-glucanase [1 → 3)-β-d-glucan glucanohydrolase, EC 3.2.1.6] produced by Rhizopus arrhizus QM 1032 was purified 305-fold in 70% overall yield. This preparation was found to be homogeneous by ultracentrifugation (sedimentation velocity and studies), electrophoresis on acrylamide gel with normal, sodium dodecyl sulfate, and urea-acetic acid gels, and upon isoelectric focusing. The amino acid composition of the enzyme has been determined and it possesses a carbohydrate moiety composed of mannose and galactose (in the ratio ≈5:1) that is linked to the protein through a 2-acetamido-2-deoxyglucose residue. The molecular number was confirmed by electrophoresis on gels of sodium dodecyl sulfate. The enzyme does not posses subunit structure. It hydrolyzes it substrates with retention of configuration and possesses transglycosylating ability. The rates of hydrolysis of a wide variety of substrates were determined, and its action pattern on a series of oligosaccharides containing mized (1 → 3-, (1 → 4)-, and (1 → 6)-β-d-glucopyranosyl residues was investigated. The enzyme favors stretches of β-d-(1 → 3) linkages, but it can hydrolyze β-d-(1 → 4) linkages that are flanked on the non-reducing side with stretches of β-d-(1 → 3) links. The enzyme will not act on (1 → 6)-β-d-glucosyl linkages located in stretches of β-d-(1 → 3) and will not act on (1 → 3) β-d-glycosidic linkages involving sugars other than d-glucose.  相似文献   

4.
A commercial enzyme preparation, of fungal origin, contained a mixture of β-D-glucanases which were fractionated by ion-exchange chromatography to give a mixture of an endo-(1→4)- and an exo-(1→3)-β-D-glucanase. These two enzymes were then separated by molecular-sieve chromatography on Sephadex G-150. The purified exo-(1→3)-β-D-glucanase has a relatively high specificity for (1→3)-β-D-glucosidic linkages, and has no action on lichenin.  相似文献   

5.
Two endo-β-D-glucanases which act, respectively, on (1→3)-β-D-glucans and barley β-D-glucan have been isolated from malted barley, and purified by ion-exchange chromatography. The latter enzyme is highly specific for barley β-D-glucan, and has no action on either (1→3)- or (1→4)-β-D-glucans. It will also act on dyed barley-β-D-glucan. Certain group-specific reagents inhibit the endo-barley-β-D-glucanase and the endo-(1→3)-β-D-glucanase to similar extents.  相似文献   

6.
The retaining endo-1,3-β-d-glucanase (EC 3.2.1.39) was isolated from the crystalline styles of the commercially available Vietnamese edible mussel Perna viridis. It catalyzes hydrolysis of β-1,3-bonds in glucans and enables to catalyze a transglycosylation reaction. Resources of mass-spectrometry for analysis of enzymatic products were studied. cDNA sequence of endo-1,3-β-d-glucanase was determined by RT-PCR in conjunction with the rapid amplification of cDNA ends (RACE) methods. The cDNA of 1380bp contains an open reading frame of 1332bp encoding a mature protein of 328 amino acids. On basis of amino acid sequence analysis endo-1,3-β-d-glucanase was classified as a glycoside hydrolase of family 16.  相似文献   

7.
Two amyloid-type fractions were isolated from field-bean (Dolichos lablab) hulls by 10% alkali extraction followed by acetylation and solvent fractionation. The major, chloroform-insoluble fraction and a minor, chloroform-soluble fraction were found to be homogeneous in sedimentation analysis and molecular-sieve chromatography. The polysaccharides contained xylose and glucose in various proportions. Methylation analysis, periodate oxidation, Smith degradation, oxidation by chromium trioxide, and oligosaccharide studies indicated a new type of structure for the major fraction (glucose:xylose ratio of 1.9:1) in that it had a backbone of (1→4)-linked β-d-glucose residues interspersed with single or multiple residues of (1→4)-linked β-d-xylose, and to which some single d-xylosyl groups are attached through O-6 of d-glucose. In contrast, the minor fraction (glucose:xylose ratio of 1:3.7) had a backbone of (1→4)-linked β-d-xylose interspersed with (1→4)-β-d-glucose and having a side chain of d-xylose, attached through O-6 of d-glucose. The third fraction was found to be a mixture of linear (1→4)-d-glucan and (1→4)-d-xylan.  相似文献   

8.
A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridiumpasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose.  相似文献   

9.
Inconsistencies in assays of fermentation broths of Aspergillus fumigatus IMI 255091 were observed for endo-1,4-β-d-glucanase [1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] and β-d-glucosidase (β-d-glucoside glucohydrolase, EC 3.2.1.21). Dilution of the original sample appeared to enhance activity. These enzymes were apparently not adsorbed by sintered microporous inorganic spheroids specially fabricated for protein adsorption. The adsorbents removed other proteins, including material shown to be of low molecular weight and assumed to be an inhibitor, permitting considerably enhanced activity.  相似文献   

10.
Three purified endo-(1→4)-β-d-glucanases (EC 3.2.1.4), A, B, and C, from Sclerotium rolfsii culture filtrates showed homogeneity in disc-gel electrophoresis and in analytical isoelectric-focusing in polyacrylamide gel. The three endo-d-glucanases are glycoproteins, endo B and endo C being composed of a single polypeptide chain, and endo A of two dissimilar polypeptide chains that are covalently bound by a disulfide bridge. Endo B and endo C do not contain half-cystine residues. With carboxymethylcellulose as substrate, the liquifying activity of the three enzymes was inhibited by cellobiose but not by d-glucose. The specificity of the enzymes is restricted to β-(1→4) linkages, but they showed some differences in the mode of attack on cellodextrins, phosphoric acid-swollen cellulose, and lichenan to give cellobiose, cellotriose, and small proportions of d-glucose. Endo B in addition showed endo-d-xylanase activity.  相似文献   

11.
β-d-Mannosidase (β-d-mannoside mannohydrolase EC 3.2.1.25) was purified 160-fold from crude gut-solution of Helix pomatia by three chromatographic steps and then gave a single protein band (mol. wt. 94,000) on SDS-gel electrophoresis, and three protein bands (of almost identical isoelectric points) on thin-layer iso-electric focusing. Each of these protein bands had enzyme activity. The specific activity of the purified enzyme on p-nitrophenyl β-d-mannopyranoside was 1694 nkat/mg at 40° and it was devoid of α-d-mannosidase, β-d-galactosidase, 2-acet-amido-2-deoxy-d-glucosidase, (1→4)-β-d-mannanase, and (1→4)-β-d-glucanase activities, almost devoid of α-d-galactosidase activity, and contaminated with <0.02% of β-d-glucosidase activity. The purified enzyme had the same Km for borohydride-reduced β-d-manno-oligosaccharides of d.p. 3–5 (12.5mm). The initial rate of hydrolysis of (1→4)-linked β-d-manno-oligosaccharides of d.p. 2–5 and of reduced β-d-manno-oligosaccharides of d.p. 3–5 was the same, and o-nitrophenyl, methylumbelliferyl, and naphthyl β-d-mannopyranosides were readily hydrolysed. β-d-Mannobiose was hydrolysed at a rate ~25 times that of 61-α-d-galactosyl-β-d-mannobiose and 63-α-d-galactosyl-β-d-mannotetraose, and at ~90 times the rate for β-d-mannobi-itol.  相似文献   

12.
Exopolysaccharides of Agrobacterium tumefaciens and Rhizobium meliloti, containing d-glucose, d-galactose, pyruvic acid, and O-acetyl groups in the approximate proportions 6:1:1:1.5, were analysed by methylation. They were found to contain the following main structural units (all β-glycosidic): chain residues of (1→3)-linked d-glucose (24%), (1→3)-linked d-galactose (15%), (1→4)-linked d-glucose (20%), and (1→6)-linked d-glucose (18%); (1→4,1→6)-linked branching residues of d-glucose (12%), and terminal d-glucose residues substituted at positions 4 and 6 by pyruvate (11%). Uronic acid-containing exopolysaccharides of Rhizobium leguminosarum, R. phaseoli, and R. trifolii contained d-glucose, d-glucuronic acid, d-galactose, pyruvic acid, and O-acetyl groups in the approximate proportions 5:2:1:2:3. Methylation gave identical patterns of methylated sugar components, from which the following structural elements were deduced: chain residues of (1→3)-linked d-glucose substituted at positions 4 and 6 by pyruvate (13%), (1→4)-linked d-glucose (32%), and (1→4)-linked d-glucuronic acid (20%); (1→4,1→6)-linked branching residues of d-galactose and/or d-glucose (13%), and terminal d-glucose and/or d-galactose residues substituted at positions 4 and 6 by pyruvate (13%).  相似文献   

13.
The particulate enzyme responsible for the synthesis of β-(1→4)-d-glucans from UDP-[14C-d-glucose has been solubilized and some of its properties have been characterized. Mg2+ markedly enhanced synthesis of β-(1→4)-d-glucans and inhibited synthesis of β-(1→3)-d-glucans. The optimal pH for synthesis of β-(1→4)-d-glucans is near pH 8 and the synthesis was enhanced in these preparations by d-glucose, methyl-β-d-glucopyranoside and cellobiose.  相似文献   

14.
A β-d-glucan of low molecular weight isolated from the marine alga Caulerpa simpliciuscula has been shown to contain 30 glucose residues. At least 27 of these are β-d-(1→3) linked. There are 1-2β-(1→6) branches per molecule, with a maximum of 4 d-glucose residues per side chain. As normally isolated, this glucan is associated with a soluble (1→4)-α-d-glucan (soluble starch) of the same molecular weight, in the ratio of 3 molecules of β-d-glucan per molecule of α-d-linked glucan.  相似文献   

15.
Six microbial strains (JT) of endospore-forming, anaerobic, thermophilic and cellulolytic bacteria were isolated from camel feces, compost, soil and hot spring water in Japan. These strains are gram negative and classified as the genus Clostridium. Strains JT3-1, JT3-2 and JT3-3 can digest starch. All of the strains produce a high activity of extracellular cellulases in cellobiose and cellulose media.Strain JT1 produced 1.36 units/ml of CMCase (endo-β-1,4-d-glucanase, EC 3.2.1.4), 66.2 units/ml of β-glucosidase (ED 3.2.1.21) and 39.9 units/ml of β-xylosidase (EC 3.2.1.37) in 1% cellobiose medium. Strain JT3-3 produced 1.87 units/ml of CMCase, 166.3 units/ml of β-glucosidase and 23.6 units/ml of β-xylosidase in 1% cellulose medium.  相似文献   

16.
The structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, has been further investigated. Periodate oxidation, Smith degradation, methylation analysis, and bioassay were the principal methods used. These studies showed that a branched molecule having a backbone of (1→3)-β-d-glucan and side chains of both β-d-(1→3)- and β-d-(1→6)-linked d-glucose residues, together with a few internal β-d-(1→6)-linkages, is present.  相似文献   

17.
《Carbohydrate research》1987,166(2):263-269
An arabinoxylan isolated from the bark of Cinnamomum zeylanicum was composed of l-arabinose and d-xylose in the molar ratio 1.6:1.0. Partial hydrolysis furnished oligosaccharides which were characterised as α-d-Xylp-(1→3)-d-Ara, β-dXylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-d-Xyl, β-d-Xylp-(1→4)-β-d-Xylp-(1→4)-β-d-Xylp-Xylp-(1→4)-d-Xyl, xylopentaose, and xylohexaose. Mild acid hydrolysis of the arabinoxylan gave a degraded polysaccharide consisting of l-arabinose (8%) and d-xyolse (92%). Methylation analysis indicated the degraded polysaccharide to be a linear (1→4)-linked d-xlan in which some xylopyranosyl residues were substituted at O-2 or O-3 with l-arabinofuranosyl groups. These data together with the results of methylation analysis and periodate oxidation of the arabinoxylan suggested that it contained a (1→4)-linked β-d-xylan backbone in which each xylopyranosyl residue was substituted both at O-2 and O-3 with l-arabinofuranosyl, 3-O-α-d-xylopyranosyl-l-arabinofuranosyl, and 3-O-l-arabinofuranosyl-l-arabinofuranosyl groups.  相似文献   

18.
Cellulases [see 1,4(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma reesei, Rutgers C30, can be semicontinuously produced in an aqueous two-phase system composed of dextran and poly(ethylene glycol) using Solka Floc BW 200 as substrate. When substrate was intermittently added along with fresh top phase, which replaced the withdrawn top phase containing the produced enzymes, a yield of 1740 U endo-β-d-glucanase/g cellulose and 59.3 FPU/g cellulose was extracted with the top phase. Without fresh substrate added, a yield of 3920 U endo-β-d-glucanase/g cellulose and 127.7 FPU/g cellulose was extracted after five runs.  相似文献   

19.
The evolutionary relationships of two classes of plant β-glucan endohydrolases have been examined by comparison of their substrate specificities, their three-dimensional conformations and the structural features of their corresponding genes. These comparative studies provide compelling evidence that the (1→3)-β-glucanases and (1→3,1→4)-β-glucanases from higher plants share a common ancestry and, in all likelihood, that the (1→3,1→4)-β-glucanases diverged from the (1→3)-β-glucanases during the appearance of the graminaceous monocotyledons. The evolution of (1→3,1→4)-β-glucanases from (1→3)-β-glucanases does not appear to have invoked ‘modular’ mechanisms of change, such as those caused by exon shuffling or recombination. Instead, the shift in specificity has been acquired through a limited number of point mutations that have resulted in amino acid substitutions along the substrate-binding cleft. This is consistent with current theories that the evolution of new enzymic activity is often achieved through duplication of the gene encoding an existing enzyme which is capable of performing the required chemistry, in this case the hydrolysis of a glycosidic linkage, followed by the mutational alteration and fine-tuning of substrate specificity. The evolution of a new specificity has enabled a dramatic shift in the functional capabilities of the enzymes. (1→3)-β-Glucanases that play a major role, inter alia, in the protection of the plant against pathogenic microorganisms through their ability to hydrolyse the (1→3)-β-glucans of fungal cell walls, appear to have been recruited to generate (1→3,1→4)-β-glucanases, which quite specifically hydrolyse plant cell wall (1→3,1→4)-β-glucans in the graminaecous monocotyledons during normal wall metabolism. Thus, one class of β-glucan endohydrolase can degrade β-glucans in fungal walls, while the other hydrolyses structurally distinct β-glucans of plant cell walls. Detailed information on the three-dimensional structures of the enzymes and the identification of catalytic amino acids now present opportunities to explore the precise molecular and atomic details of substrate-binding, catalytic mechanisms and the sequence of molecular events that resulted in the evolution of the substrate specificities of the two classes of enzyme.  相似文献   

20.
The crystalline style of the gastropod Telescopium telescopium contains two (1→3)-β-d-glucanases and a β-d-glucosidase. The two glucanases (I and II) have been purified and shown to be endo-enzymes. Both enzymes attack laminarin, carboxymethylpachyman, and lichenin, but have no action towards carboxymethyl-cellulose. The main products of hydrolysis of laminarin are d-glucose and β-(1→3)-linked oligosaccharides of d.p. 2, 3, and 4. Glucanases I and II are similar to each other, although they differ in molecular weight and kinetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号