首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The title compound, when recrystallised from water, is monoclinic, space group P21, with a = 5.774(4), b = 7.189(5), c = 12.69(1) Å, β = 106.66(5)°, and Z = 2. The crystal structure was determined from three-dimensional X-ray diffraction data taken on an automatic diffractometer with CuKα, and refined by least-squares techniques to R = 0.034 for 977 reflexions. The pyranose ring adopts the 4C1 conformation. The conformation about the exocyclic C-5-C-6 bond is gauche-trans [the torsion angles O-6-C-6-C-5-O-5 and O-6-C-6-C-5-C-4 are 64.2(8) and ?175.6(7)°, respectively], which is significantly different from the gauche-gauche geometry in d-glucose 6-(barium phosphate). The phosphate ester bond, P-O-6, is 1.584(3) Å. All of the oxygen-bonded hydrogen atoms are involved in intermolecular hydrogen-bonds.  相似文献   

2.
The erythro-2,3-dihydroxyoctadecanoic acid studied is a synthetic homologue of a natural occurring constituent of sphingolipids. The potassium salt of the acid crystallizes in the monoclinic space group P2, with the unit cell dimension: a = 5.39, b = 7.06, c = 26.26 A? and β = 94.9°. The crystal structure was solved by direct methods and was refined to R = 0.062. The absolute configuration of the compound was determined by means of anomalous scattering effects, showing that the natural fatty acid has d-erythro configuration. The compound packs tail to tail in an unusual bilayer arrangement. The hydrocarbon chains have an extreme tilt of 60° and opposite inclination in the two halves of the bilayer. Laterally the hydrocarbon chains are arranged according to the monoclinic M∥ packing mode. The carbon chain makes a perpendicular bent at carbon atom 2. This places the 2-hydroxyl group in a preferred co-planar conformation towards the carboxylate group and at hydrogen bond distance to one of the carboxylate oxygens. The carboxylate group and the two hydroxyl groups are co-ordinated to K+ ions and together account for a large molecular cross-ection of 38 Å2. Monolayer studies show that the acid forms a phase with this spacious molecular area also in contact with water. On compression above 10 mN m?1 transition to a more condensed state (S = 27 A?2) takes place accompanied by marked changes of the surface potential.  相似文献   

3.
An electron diffraction study was carried out on thin single micro-crystals of l-type and dl-type dipalmitoyl lecithins grown in xylene suspensions and fine net patterns were obtained and the mechanism of the thermotropic phase transitions of them was clarified.From the apparent structure of diffraction patterns in low temperature, it is confirmed that the two dimensional lattices have p mm symmetry in l-type and in dl-type lecithins. Lattice parameters from the [001] projection are d100 = 9.9 A? and d010 = 8.8 A? in l-type, and d100 = 17.2 A? and d010 = 8.9 A? in dl-type.With anisotropic variation of dimensions along a and b axes, i.e. contraction for a and expansion for b, induced by temperature rise by electron irradiation during the observation, these diffraction patterns of the lattices of l-type and dl-type were transformed into those characterized by the six diffraction spots having nearly the same spacings. Four of them are observed on slightly outer and two are slightly inner positions as compared with their mean spacings of about (4.1 Å)?1 in l-type and about (4.2 Å)?1 in dl-type. The changes in the patterns observed indicate that at low temperatures the hydrocarbon chains are nearly perpendicular to the layer in dl-type lipid, and tilted with a more complicated packing in l-type ones. The dimension along a in dl-type is twice as large as that in l-type.  相似文献   

4.
The effects of d-glucose addition to a glucose-free luminal perfusate were investigated in the proximal tubule of Necturus kidney, by electrophysiological techniques. The main findings are: (1) In the presence of sodium, d-glucose produces 10.5 mV ± 1.1 (S.E.) depolarization. (2) Phlorizin reduces the magnitude of this response to 2.1 ± 0.1 mV. (3) The glucose-evoked depolarization, ΔVG, does not alter the intracellular K+ activity nor is it affected by peritubular addition of ouabain. (4) Isosmotic reduction of Na+ concentration in luminal perfusate from 95 to 2 mmol/l (choline or Li+ substituting for Na+) does not change the magnitude of ΔVG; complete removal of sodium from the lumen lowers the value of ΔVG (3.2 ± 0.2 mV) but the response is not abolished. This observation suggests that the d-glucose carrier of renal tubules in Necturus is poorly specific with regard to the cotransported cation species.  相似文献   

5.
d-Glucuronate is a key metabolite in the process of detoxification of xenobiotics and in a recently constructed synthetic pathway to produce d-glucaric acid, a “top value-added chemical” from biomass. A simple and specific assay of d-glucuronate would be useful for studying these processes, but existing assays are either time-consuming or nonspecific. Using uronate dehydrogenase cloned from Agrobacterium tumefaciens, we developed an assay for d-glucuronate with a detection limit of 5 μM. This method was shown to be more suitable for a system with many interfering compounds than previous methods and was also applied to assays for myo-inositol oxygenase activity.  相似文献   

6.
Two l-arabino-d-galactan-containing glycoproteins having a potent inhibitory activity against eel anti-H agglutinin were isolated from the hot saline extracts of mature radish leaves and characterized to have a similar monosaccharide composition that consists of l-arabinose, d-galactose, l-fucose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid residues. The chemical structure features of the carbohydrate components were investigated by carboxyl group reduction, methylation, periodate oxidation, partial acid hydrolysis, and digestion with exo- and endo-glycosidases, which indicated a backbone chain of (1→3)-linked β-d-galactosyl residues, to which side chains consisting of α-(1→6)-linked d-galactosyl residues were attached. The α-l-arabinofuranosyl residues were attached as single nonreducing groups and as O-2- or O-3-linked residues to O-3 of the β-d-galactosyl residues of the side chains. Single α-l-fucopyranosyl end groups were linked to O-2 of the l-arabinofuranosyl residues, and the 4-O-methyl-β-d-glucopyranosyluronic acid end groups were linked to d-galactosyl residues. The O-α-l-fucopyranosyl-(1→2)-α-l-arabinofuranosyl end-groups were shown to be responsible for the serological, H-like activity of the l-arabino-d-galactan glycoproteins. Reductive alkaline degradation of the glycoconjugates showed that a large proportion of the polysaccharide chains is conjugated with the polypeptide backbone through a 3-O-d-galactosylserine linkage.  相似文献   

7.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

8.
The crystal and molecular structure of a 3:2 mixture of laminarabiose and 3-O-α-d-glucopyranosyl-β-d-glucopyranose has been determined by X-ray diffraction. The crystal belongs to the monoclinic system, space group P2, a 14.778(1), b 4.794(1), c 10.516(1) Å and β 98.10(1)c, Dm 1.54 g. cm-3, Z 2. The structure was solved by the direct method and refined by the block-diagonal, least-squares procedure to R 0.057 for 1034 observed reflections. Difference synthesis showed all hydrogen atoms and indicated a partial (~39%), random substitution of the β anomer molecules by the α anomer molecules, which are accompanied by water molecules on the crystallographic two-fold axis (~19%). The molecule shows a conformation, different from the fully-extended one, which is stabilized by an intramolecular hydrogen-bond between O-1-H and O-5 [2.786(7) Å]. The ring-to-ring conformation can be described as (Φ, Ψ)=(27.9·–37.5·), according to the definition of Sathyanarayana and Rao, and it is located in the comparatively low-energy region of the energy-contour diagram of laminarabiose. Four intermolecular hydrogen-bonds hold molecules together to form infinite sheets, which are approximately parallel to the ab-plane and linked by additional hydrogen-bonds in the c-direction.  相似文献   

9.
10.
The fluorescence properties of chlorophyll a and b monomolecular films at the air-water interface were measured by a high sensitivity fluorophotometer using the photon-counting method. The fluorescence intensity of chlorophyll molecules in monomolecular films in the absence of any diluents did not decrease simply with the mean distance of chlorophyll molecules. Over the range of the mean distances from 27 to 21 Å, three fluorescence components (peaks at 685, 695 and 715 nm) of chlorophyll a were observed. In the case of chlorophyll b, two fluorescence components (peaks at 667 and 685 nm) were observed over the range of the mean distances from 34 to 24 Å. When the mean distance was 18 Å, the short wavelength component of chlorophyll b disappeared, and only the long wavelength component was observed.  相似文献   

11.
X-Ray data collected at 87 K showed crystals of sodium α-l-guluronate dihydrate (C6H9O7Na · 2 H2O) to be orthorhombic, P212121 with a = 7.591(2), b = 18.884(5), c = 6.842(2) Å, and Z = 4. The structure was solved by direct methods, and full-matrix least-squares refinement based on 1587 Fo yielded R = 0.043 and Rw = 0.033. The structure analysis indicates partial anomeric disorder with α:β ~90:10. The guluronate ring has the 1C4(l) conformation. Sodium binds two translation-equivalent guluronate units and one water molecule in a primary five-fold coordination. The complexing oxygen functions, which include all axial hydroxyl groups and one carboxylate oxygen atom in the guluronate ring, describe a distorted trigonal bipyramid. A prominent feature of the crystal structure is the stacks of sodium atoms and guluronate residues in alternating sequence along the c axis. The stacks are held together by an intricate system of hydrogen bonds involving all oxygen atoms in the structure. The water molecules play an important role in this system both as hydrogen donors and acceptors.  相似文献   

12.
The possible modes of binding for methyl-α-d-mannopyranoside, methyl-β-d-mannopyranoside, 2-O-methyl-α-d-mannopyranoside, methyl-2-O-methyl-α-d-mannopyranoside and methyl-α-d-N-acetylmannosamine to concanavalin A have been investigated using theoretical methods. All these sugars, except methyl-α-d-N-acetylmannosamine, reach the active site of concanavalin A with a highly restricted number of binding orientations. Present investigations suggest that the failure of methyl-α-d-N-acetylmannosamine to bind to concanavalin A is not so much due to steric factors as to repulsive electrostatic interactions. Methyl-2-O-methyl-α-d-mannopyranoside can bind to concanavalin A in one mode whereas the other sugars can bind in more than one mode. The high potency of methyl-α-d-mannopyranoside over methyl-β-d-mannopyranoside is mainly due to the possibility of hydrophobic interactions of the α-methoxy group with Leu(99) or Tyr(100) and also due to the possibility of formation of better and more hydrogen bonds with the protein. A comparison of these data with those for the d-glucopyranosides suggests that the change of the hydroxyl at the C-2 atom from equatorial to axial orientation increases the stereochemically allowed region as well as the possible binding modes. From these studies it is also suggested that the overall shape of the oligosaccharides rather than the terminal or internal mannose alone affects the binding potency of saccharides to concanavalin A.  相似文献   

13.
14.
CNDO2 molecular orbital theoretical calculations performed on the anti and syn diolepoxides (1 and 2) of the potent carcinogen benzo[a]pyrene provide insight into the molecular structure and reactivity of these mutagenic and carcinogenic hydrocarbon metabolites. Hydrogen-bonded interaction between the 7-HO proton and the epoxide oxygen atom of 2 is shown to be absent in the normal semichair conformation of the tetrahydro ring, (H…O bond distance = 2.7 Å), but is energetically favored in a somewhat distorted puckered structure (H…O bond distance = 1.7 Å). Unexpectedly, internal H-bonding alters the relative electron density at C9 and C10, leading to prediction of the former as the more electrophilic center. Since all reactions of 2 take place exclusively at C10, transannular H-bonding is concluded not to contribute significantly to the structure of 2. Diolepoxide reactions with both weak and strong nucleophiles and with DNA are discussed and the mechanisms interpreted in terms of molecular structure as determined by the theoretical calculations.  相似文献   

15.
d-Gluconate uptake was studied in whole cells of Arthrobacter pyridinolis; the uptake activity was inducible, mutable and showed saturation kinetics (Km = 5 μM). Uptake of d-gluconate was not mediated by a phosphoenolpyruvate: hexose phosphotransferase system, nor was it directly energized by ATP. A transmembrane pH gradient, ΔpH, of ?63 mV was generated by A. pyridinolis cells at pH 6.5, while at pH 7.5, ΔpH = 0. Addition of 8 μM d-gluconate significantly reduced the ΔpH. The transmembrane electrical potential, Δψ, which was ?87 mV over a range of pH from 5.5 to 7.5, was unaffected by the presence of substrate. d-Gluconate accumulated at the same rate and as the protonated solute, at both pH 6.5 and 7.5. Experiments in which a diffusion potential was generated in cyanide-treated cells, indicated that the Δψ did not energize transport. Rather, the rate of d-gluconate uptake correlated with and appeared to be determined by the rate of d-gluconate metabolism: (a) treatment of cells with valinomycin or nigericin, under conditions in which there was a loss of intracellular potassium, inhibited both d-gluconate uptake and the metabolism of pre-accumulated d-gluconate; (b) the effects of cyanide and azide on d-gluconate uptake were much more severe at pH 6.5 than pH 7.5, a pattern which paralleled the effects of these inhibitors on d-gluconate metabolism; (c) extraction and chromatography of intracellular label from d-gluconate uptake revealed that accumulation of unaltered d-gluconate was negligible; (d) a series of mutant strains with lower d-gluconate kinase activities also exhibited low rates of d-gluconate uptake; (e) spontaneous revertants of these mutant strains consistently regained both d-gluconate kinase activity and wild type levels of uptake.  相似文献   

16.
2-Deoxy-D-glucoside-2-sulphamate sulphohydrolase was extracted from human liver and purified 40 000-fold by a simple four column procedure. The purification was followed using a specific substrate isolated from an acid hydrolysate of heparin, O-(α-2-sulphamino-2-deoxy-D-glucopyranosyl)-(1→3)-L-[6,3H]idonic acid. Only one form of the enzyme was seen on either ion exchange chromatography or isoelectric focussing, with a pI of 6.8. The apparent Mr of the haloenzyme as determined by gel filtration was 190 000 ± 20 000. Two other larger Mr protein peaks observed on gel filtration appear to be an inactive dimer of the 190 000 dalton peak and a larger aggregate near the exclusion limit of the column. On polyacrylamide disc gel electrophoresis in sodium dodecyl sulphate, with or without prior reduction, each protein peak from the gel filtration column electrophoreced as a single major band with an apparent Mr corresponding to 55 000 ± 6000.  相似文献   

17.
18.
The crystal structure of sodium guanylyl-3′,5′-cytidine (GpC) nonahydrate has been determined by X-ray diffraction procedures and refined to an R value of 0.054. GpC crystallizes with four molecules per monoclinic unit cell, space group C2, with cell dimensions: a = 21.460, b = 16.297, c = 9.332 A? and β = 90.54 °. Two molecules of GpC related by the 2-fold axis of the crystal form a small segment of right-handed, anti-parallel double-helical RNA in the crystal. Guanine is paired to cytosine through three hydrogen bonds of lengths 2.91, 2.95 and 2.86 Å. The bases along each strand are heavily stacked at a distance of about 3.4 Å. The fragments form skewed flattened rods within the lattice by the inter-molecular stacking of guanines with each other and the stacking of cytosine with the guanosine Ol′atom. The sodium cations are bound only to the ionized phosphate groups in this structure and exhibit face-sharing octahedral co-ordination. The sodium cations serve to bridge the rods of GpC fragments and organize them into sheets within the crystal. There are 18 water molecules per double-helical fragment which are all part of the first co-ordination shell of nitrogen, oxygen or sodium atoms.  相似文献   

19.
Kinetic data for the oxidations of d-fructose and l-sorbose by chromium(VI) and vanadium(V) in perchloric acid medium are reported. The addition of perchloric acid and sodium perchlorate increases the pseudo-first-order rate constants. Change of the reaction medium from water to deuterium oxide appreciably affects the rates of chromium(VI) oxidations, but does not affect those of vanadium(V) oxidations. The activation parameters are ΔH3 = 46.6 ±3.4 (fructose) and 50.6 ±6.3 (sorbose) kJ.mol?1, and ΔS3 = ?105 ±11 (fructose) and ?100 ±20 (sorbose) J.deg?1.mol?1 for chromium(VI) oxidations, and, for the other reactions, ΔH3 = 53.2 ±4.2 (fructose) and 52.3 ±6.3 (sorbose) kJ.mol?1, and ΔS3 = ?139.0 ±14 (fructose) and ?137 ±20 (sorbose) J.deg?1.mol?1. The kinetics of the oxidations of ketohexoses by chromium(VI) indicate no intermediate-complex formation, whereas those for vanadium(V) indicate the formation of a 1:1 intermediate complex between ketohexoses and vanadium(V).  相似文献   

20.
(1)‘Uptake’ of phlorizin by intestinal brush border membrane vesicles is stimulated, much as that of d-glucose, by the simultaneous presence of Naout+ and Δψ?0. However, phlorizin contrary to d-glucose, fulfills all criteria of a non-translocated ligand (i.e., of a fully competitive inhibitor) of the Na+,d-glucose cotransporter. (2) The stoicheiometry of Na+/phlorizin binding is 1, as shown by a Hill coefficient of approx. 1 in the Naout+-dependence of phlorizin binding. (3) The preferred order of binding at Δψ?0 is Na+ first, phlorizin second (4) The velocity of association of phlorizin to the cotransporter, but not the velocity of its dissociation therefrom, responds to Δψ. These observations while agreeing with the effect of Δψ?0 on the Kd of phlorizin binding in the steady-state time range, also confirm that the mobile part of the cotransporter bears a negative charge of 1. (5) A model is proposed describing the Na+,Δψ-dependent interaction of phlorizin with the cotransporter and agreeing with a more general model of Na+,d-glucose cotransport. (6) The kon, koff and Kd constants of phlorizin interaction with the Na+,d-glucose cotransporter are smaller in the kidney than in the small-intestinal brush border membrane, which results in a number of quantitative differences in the overall behaviour of the two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号