首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of radical intermediates during alkaline, oxidative degradation of saccharides and α-hydroxycarbonyl compounds has been studied by e.s.r. spectroscopy. Quantum chemical calculation and experiments in alkaline D2O solution showed that the dominant component of the overall spectrum corresponds to 2,5-dihydro-p-benzosemiquinone. Formation of this radical was also observed in the alkaline-degradation products of cellulose, starch, and (4-O-methylglucurono)xylan in the presence of air.  相似文献   

2.
Chlorogenic acid and rutin, major polyphenols in tobacco, were pyrolysed with a furnace type pyrolyser connected directly to a gas Chromatograph and 22 compounds (including catechol, benzoic acid, 4-vinylcatechol and quinic acid γ-lactone) from chlorogenic acid and 24 compounds [including catechol, 5-methyl-2-furaldehyde, 4-methylcatechol and 1,6-anhydroglucopyranose (levoglucosan)] from rutin have been identified as pyrolysis products. The gas Chromatograph was also replaced by a capillary cold trap which allowed collection of the pyrolysis products prior to a quantitative determination using an internal standard. Comparison of the pyrolysis products produced from chlorogenic acid or rutin with those derived from tobacco and analysis of the pyrolysis products from a mixture of tobacco and chlorogenic acid or rutin indicated that fairly large proportions of catechol, 4-vinylcatechol and quinic acid γ-lactone produced by the pyrolysis of tobacco may originate from endogenous chlorogenic acid.  相似文献   

3.
Preparation of nanocomposites was carried out using microcrystalline cellulose, CaCl2, and NaH2PO4 in N,N-dimethylacetamide (DMAc) solvent by a microwave-assisted method at 150 °C. XRD results showed that the nanocomposites consisted of cellulose and hydroxyapatite (HA). The cellulose existed as a matrix in the nanocomposites. SEM and TEM analysis showed that HA nanorods were homogeneously dispersed in the cellulose matrix. The effects of the microwave heating time on the products were investigated. This method has advantages of being simple, rapid, low-cost, and environmentally friendly.  相似文献   

4.
The physical parameters of cellulose such as surface area and porosity are important in the development of cellulose composites which may contain valuable additives which bind to cellulose. In this area, the use of acid hydrolyzed nano-dimensional cellulose nanowhiskers (CNWs) has attracted significant interest, yet the surface area and porosity of these materials have not been explored experimentally. The objective of this work was to characterize the surface area and porosity of CNWs from different origins (plant cotton/bacterium Gluconacetobacter xylinus) and different acid treatments (H2SO4/HCl) by N2 adsorption; as well as to compare surface area and porosity of bacterial cellulose synthesized by static and agitated cultures. Our results showed that CNWs produced from H2SO4/HCl exhibited significantly increased surface area and porosity relative to starting material cotton fiber CF11. Micropores were generated in HCl hydrolyzed CNWs but not in H2SO4 hydrolyzed CNWs. Bacterial CNWs exhibited larger surface area and porosity compared to plant CNWs. Cellulose synthesized by G. xylinus ATCC 700178 from agitated cultures also exhibited less surface area and porosity than those from static cultures.  相似文献   

5.
The increase of the price of fossil means, as well as their programmed disappearing, contributed to increase among appliances based on biomass and energy crops. The thermal behavior of Arundo donax by thermogravimetric analysis was studied under inert atmosphere at heating rates ranging from 5 to 20 °C min−1 from room temperature to 750 °C. Gaseous emissions as CO2, CO and volatile organic compounds (VOC) were measured and global kinetic parameters were determined during pyrolysis with the study of the influence of the heating rate. The thermal process describes two main phases. The first phase named active zone, characterizes the degradation of hemicellulose and cellulose polymers. It started at low temperature (200 °C) comparatively to wood samples and was finished at 350 °C. The pyrolysis of the lignin polymer occurred during the second phase from 350 to 750 °C, named passive zone. Carbon oxides are emitted during the active zone whereas VOC are mainly formed during the passive zone. Mass losses, mass loss rates and emission factors were strongly affected by the variation of the heating rate in the active zone. It was found that the global pyrolysis of A. donax can be satisfactorily described using global independent reactions model for hemicellulose and cellulose in the active zone. The activation energy for hemicellulose was not affected by a variation of the heating rate with a value close to 110 kJ mol−1 and presented a reaction order close to 0.5. An increase of the heating rate decreased the activation energy of the cellulose. However, a first reaction order was observed for cellulose decomposition. The experimental results and kinetic parameters may provide useful data for the design of pyrolytic processing system using A. donax as feedstock.  相似文献   

6.
The dependence of pyrolysis behavior on the crystal state of cellulose   总被引:1,自引:0,他引:1  
Cellulose was dissolved in the ionic liquid 1-butyl-3-methylimidazolium chloride, and then regenerated from the solution by using different methods. Thermogravimetric analysis (TG)-Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) were used to characterize the structure of the original and regenerated cellulose. Cellulose II or amorphous cellulose was obtained by pouring cellulose solution into de-ioned water or pouring de-ioned water into cellulose solution, respectively. The pyrolysis behavior of original and regenerated cellulose was tested in a fixed bed reactor. The pyrolysis of cellulose I gave high content of furfural and 1,4;3,6-dianhydro-alpha-d-glucopyranose in the liquid products, and cellulose II and amorphous cellulose gave high content of furfural and 5-(hydroxymethyl)-2-furancarboxyaldehyde, with 5-(hydroxymethyl)-2-furancarboxyaldehyde the highest for cellulose II and furfural the highest for amorphous cellulose. And the treatment of the cellulose samples favored the removal of oxygen in the form of CO2 in the pyrolysis.  相似文献   

7.
A mathematical model for enzymatic cellulose hydrolysis, based on experimental kinetics of the process catalysed by a cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparation from Trichoderma longibrachiatum has been developed. The model takes into account the composition of the cellulase complex, the structural complexity of cellulose, the inhibition by reaction products, the inactivation of enzymes in the course of the enzymatic hydrolysis and describes the kinetics of d-glucose and cellobiose formation from cellulose. The rate of d-glucose formation decelerated through the hydrolysis due to a change in cellulose reactivity and inhibition by the reaction product, d-glucose. The rate of cellobiose formation decelerated due to inhibition by the product, cellobiose, and inactivation of enzymes adsorbed on the cellulose surface. Inactivation of the cellobiose-producing enzymes as a result of their adsorption was found to be reversible. The model satisfactorily predicts the kinetics of d-glucose and cellobiose accumulation in a batch reactor up to 70–80% substrate conversion on changing substrate concentration from 5 to 100 g l?1and the concentration of the enzymic preparation from 5 to 60 g l?1.  相似文献   

8.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

9.
《Carbohydrate research》1986,146(1):113-128
Isolevoglucosenone (1,6-anhydro-2,3-dideoxy-β-d-glycero-hex-2-enopyranos-4-ulose, 3) has been synthesized from levoglucosenone (2) in six steps. Thus, 1,6-anhydro-4-O-benzyl-3-deoxy-β-d-erythro-hexopyranos-2-ulose, obtained by Michael addition of benzyl alcohol to 2, was reduced with sodium borohydride to yield a separable mixture of the C-2 epimeric alcohols 1,6-anhydro-4-O-benzyl-3-deoxy-β-d-arabino- and -ribo-hexopyranose, both of which displayed intramolecular hydrogen-bonding. Acetylation, hydrogenolytic debenzylation, and pyridinium chlorochromate oxidation then led to the 2-O-acetyl-1,6-anhydro-hexos-4-uloses, from which 3 was obtained by tetraethylammonium acetate-catalyzed β-elimination of acetic acid. On sealed-tube thermolysis in the range of 210–260°, 3 generated 3-oxidopyrylium by loss of formaldehyde; this ylide was efficiently trapped by unreacted 3, to yield the [4π + 2π]-1,3-dipolar cycloadducts 14 and 15. The structure of 14 was fully elucidated by an X-ray crystallographic study. Neither 3 was, nor the adducts 14 and 15 were, detected among the products from acid-catalyzed pyrolysis of cellulose.  相似文献   

10.
1,4:3,6-dianhydro-α-d-glucopyranose (1) was formed, together with 1,6-anhydro-3,4-dideoxy-β-d-glycero-hex-3-enopyranos-2-ulose (levoglycosenone, 2) and levoglucosan (4), on acid-catalyzed pyrolysis of d-glucose, amylopectin, and cellulose. Pyrolysis of 1 in the presence of acid provided significant quantities of 2, indicating that 1 can act as a pyrolytic precursor of 2. A pyrolysis product from cellulose previously considered to be 1,6-anhydro-3-deoxy-β-d-erythro-hex-3-enopyranose (12) was shown to be dianhydride 1.  相似文献   

11.
The mechanism for thermal decomposition of cellulose and its main products   总被引:7,自引:0,他引:7  
D.K. Shen  S. Gu   《Bioresource technology》2009,100(24):6496-6504
Experiment is performed to investigate the mechanism of the cellulose pyrolysis and the formation of the main products. The evolution of the gaseous products is examined by the 3-D FTIR spectrogram at the heating rate of 5–60 K/min. A pyrolysis unit, composed of fluidized bed reactor, carbon filter, vapour condensing system and gas storage, is employed to investigate the products of the cellulose pyrolysis under different temperatures (430–730 °C) and residence time (0.44–1.32 s). The composition in the bio-oil is characterized by GC–MS while the gases sample is analyzed by GC. The effects of temperature and residence time on the main products in bio-oil (LG, 5-HMF, FF, HAA, HA and PA) are examined thoroughly. Furthermore the possible routes for the formation of the products are developed from the direct conversion of cellulose molecules and the secondary reactions of the fragments. It is found that the formation of CO is enhanced with elevated temperature and residence time, while slight change is observed for the yield of CO2.  相似文献   

12.
Fast pyrolysis of biomass using zeolite catalyst has shown to be effective in improving aromatic production. This study focuses on aromatic production through catalytic pyrolysis of major biomass constituent i.e., cellulose. Furthermore, cellulose was torrefied to understand torrefaction’s effect on pyrolysis products. The influence of SiO2/Al2O3 ratios of zeolite (ZSM-5) catalyst on aromatic production during pyrolysis of raw and torrefied cellulose was investigated. Results showed that the catalyst acidity played a pivotal role in eliminating anhydro sugars and other oxygenated compounds while producing more aromatics. The maximum aromatic yield (~25 wt%) was obtained when ZSM-5 with the highest acidity (SiO2/Al2O3?=?30) was used, while the lowest yield (7.99 wt%) was obtained when the least acidic catalyst was used (SiO2/Al2O3?=?280) for raw cellulose pyrolysis. Torrefaction process showed to have positive effect on the aromatic production from pyrolysis. There were no aromatics produced from pyrolysis of raw cellulose in the absence of catalyst, whereas significant amount of aromatic compounds were produced from both catalytic and noncatalytic pyrolyses of torrefied cellulose. The aromatic hydrocarbons produced from catalytic pyrolysis of torrefied cellulose were 5 % more than those produced from raw cellulose at the highest temperature and catalyst acidity (SiO2/Al2O3?=?30).  相似文献   

13.
Two endoxylanases produced by C. acetobutylicum ATCC 824 were purified to homogeneity by column chromatography. Xylanase A, which has a molecular weight of 65,000, hydrolyzed larchwood xylan randomly, yielding xylohexaose, xylopentaose, xylotetraose, xylotriose, and xylobiose as end products. Xylanase B, which has a molecular weight of 29,000, also hydrolyzed xylan randomly, giving xylotriose and xylobiose as end products. Xylanase A hydrolyzed carboxymethyl cellulose with a higher specific activity than xylan. It also exhibited high activity on acid-swollen cellulose. Xylanase B showed practically no activity against either cellulose or carboxymethyl cellulose but was able to hydrolyze lichenan with a specific activity similar to that for xylan. Both xylanases had no aryl-β-xylosidase activity. The smallest oligosaccharides degraded by xylanases A and B were xylohexaose and xylotetraose, respectively. The two xylanases demonstrated similar Km and Vmax values but had different pH optima and isoelectric points. Ouchterlony immunodiffusion tests showed that xylanases A and B lacked antigenic similarity.  相似文献   

14.
The ‘reversible’ fibrous transformation cellulose I?cellulose IIII has been investigated by electron microscopy, (electron diffraction, bright and dark-fiedldaimaging) for Valonia cellulose. The transformation, performed in ethylenediamine, maintained the external appearance of the microfibrils during both the direct I→IIII and the reverse IIII→I transformations. At the crystal level, drastic modifications were revealed by dark-field imaging and negative staining. The conversion of Valonia cellulose into cellulose IIII involves a fracturing and firbrillation of the initial crystals. Such a phenomenon eplains the enhanced accessibility of the material.  相似文献   

15.
Soil microeukaryotes may trophically benefit from plant biopolymers. However, carbon transfer from cellulose into soil microeukaryotes has not been demonstrated so far. Microeukaryotes assimilating cellulose-derived carbon in oxic and anoxic soil slurries were therefore examined by rRNA-based stable-isotope probing. Bacteriovorous flagellates and ciliates and, likely, mixotrophic algae and saprotrophic fungi incorporated carbon from supplemental [U-13C]cellulose under oxic conditions. A previous study using the same soil suggested that cellulolytic Bacteria assimilated 13C of supplemental cellulose. Thus, it can be assumed that ciliates, cercozoa, and chrysophytes assimilated carbon by grazing upon and utilizing metabolic products of Bacteria that hydrolyzed cellulose in the soil slurries.  相似文献   

16.
The synergistic effect of steam explosion pretreatment and sodium hydroxide post-treatment of Lespedeza stalks (Lespedeza crytobotrya) has been investigated in this study. In this case, Lespedeza stalks were firstly exploded at a fixed steam pressure (22.5 kg/m2) for 2–10 min. Then the steam-exploded Lespedeza stalks was extracted with 1 M NaOH at 50 °C for 3 h with a shrub to water ratio of 1:20 (g/ml), which yielded 57.3%, 53.1%, 55.4%, 52.8%, 53.2%, and 56.4% (% dry weight) cellulose rich fractions, comparing to 68.0% from non-steam-exploded material. The content of glucose in cellulose rich residues increased with increment of the steaming time and reached to 94.10% at the most severity. The similar increasing trend occurred during the dissolution of hemicelluloses. It is evident that at shorter steam explosion time, autohydrolysis mainly occurred on the hemicelluloses and the amorphous area of cellulose. The crystalline region of cellulose was depolymerized under a prolonged incubation time. The characteristics of the cellulose rich fractions in terms of FT-IR and CP/MAS 13C NMR spectroscopy and thermal analysis were discussed, and the surface structure was also investigated by SEM.  相似文献   

17.
In the conversion of lignocellulose into high-value products, including fuels and chemicals, the production of cellulase and the enzymatic hydrolysis for producing fermentable sugar are the largest contributors to the cost of production of the final products. The marine bacterium Saccharophagus degradans 2-40T can degrade more than ten different complex polysaccharides found in the ocean, including cellulose and xylan. Accordingly, S. degradans has been actively considered as a practical source of crude enzymes needed for the saccharification of lignocellulose to produce ethanol by others including a leading commercial company. However, the overall enzyme system of S. degradans for hydrolyzing cellulose and hemicellulose has not been quantitatively evaluated yet in comparison with commercial enzymes. In this study, the inductions and activities of cellulase and xylanase of cell-free lysate of S. degradans were investigated. The growth of S. degradans cells and the activities of cellulase and xylanase were promoted by adding 2 % of cellulose and xylan mixture (cellulose:xylan = 4:3 in mass ratio) to the aquarium salt medium supplemented with 0.2 % glucose. The specific cellulase activity of the cell-free lysate of S. degradans, as determined by the filter paper activity assay, was approximately 70 times lower than those of commercial cellulases, including Celluclast 1.5 L and Accellerase 1000. These results imply that significant improvement in the cellulase activity of S. degradans is needed for the industrial uses of S. degradans as the enzyme source.  相似文献   

18.
Xylan–lignin (XL), glucomannan–lignin (GML) and glucan–lignin (GL) complexes were isolated from spruce wood, hydrolyzed with xylanase or endoglucanase/β-glucosidase, and analyzed by analytical pyrolysis and 2D-NMR. The enzymatic hydrolysis removed most of the polysaccharide moieties in the complexes, and the lignin content and relative abundance of lignin–carbohydrate linkages increased. Analytical pyrolysis confirmed the action of the enzymatic hydrolysis, with strong decreases of levoglucosane and other carbohydrate-derived products. Unexpectedly it also revealed that the hydrolase treatment alters the pattern of lignin breakdown products, resulting in higher amounts of coniferyl alcohol. From the anomeric carbohydrate signals in the 2D-NMR spectra, phenyl glycoside linkages (undetectable in the original complexes) could be identified in the hydrolyzed GML complex. Lower amounts of glucuronosyl and benzyl ether linkages were also observed after the hydrolysis. From the 2D-NMR spectra of the hydrolyzed complexes, it was concluded that the lignin in GML is less condensed than in XL due to its higher content in β-O-4′ ether substructures (62 % of side chains in GML vs 53 % in XL) accompanied by more coniferyl alcohol end units (16 vs 13 %). In contrast, the XL lignin has more pinoresinols (11 vs 6 %) and dibenzodioxocins (9 vs 2 %) than the GML (and both have ~13 % phenylcoumarans and 1 % spirodienones). Direct 2D-NMR analysis of the hydrolyzed GL complex was not possible due to its low solubility. However, after sample acetylation, an even less condensed lignin than in the GML complex was found (with up to 72 % β-O-4′ substructures and only 1 % pinoresinols). The study provides evidence for the existence of structurally different lignins associated to hemicelluloses (xylan and glucomannan) and cellulose in spruce wood and, at the same time, offers information on some of the chemical linkages between the above polymers.  相似文献   

19.
Thermomonospora fusca YX grown in the presence of cellulose produces a number of β-1-4-endoglucanases, some of which bind to microcrystalline cellulose. By using a multicopy plasmid, pIJ702, a gene coding for one of these enzymes (E2) was cloned into Streptomyces lividans and then mobilized into both Escherichia coli and Streptomyces albus. The gene was localized to a 1.6-kilobase PvuII-ClaI segment of the originally cloned 3.0-kilobase SstI fragment of Thermomonospora DNA. The culture supernatants of Streptomyces transformants contain a major endoglucanase that cross-reacts with antibody against Thermomonospora cellulase E2 and has the same molecular weight (43,000) as T. fusca E2. This protein binds quickly and tightly to Avicel, from which it can be eluted with guanidine hydrochloride but not with water. It also binds to filter paper but at a slower rate than to Avicel. Several large proteolytic degradation products of this enzyme generated in vivo lose the ability to bind to Avicel and have higher activity on carboxymethyl cellulose than the native enzyme. Other smaller products bind to Avicel but lack activity. A weak cellobiose-binding site not observed in the native enzyme was present in one of the degradation products. In E. coli, the cloned gene produced a cellulase that also binds tightly to Avicel but appeared to be slightly larger than T. fusca E2. The activity of intact E2 from all organisms can be inactivated by Hg2+ ions. Dithiothreitol protected against Hg2+ inactivation and reactivated both unbound and Avicel-bound Hg2+-inhibited E2, but at different rates.  相似文献   

20.
Physiological and biochemical properties of the strain Penicillium tardum H-2, a degrader of phenolic compounds formed during lignin pyrolysis, have been characterized. The micromycete P. tardum H-2 can consume phenol, catechol, p-cresol, vanillin, and guaiacum tar. When grown in a medium containing a water-soluble fraction of lignin pyrolysis waste at concentrations from 0.5 to 2%, it consumes 62–72% of the phenolic components of the waste. According to gas-liquid chromatography, cultivation of P. tardum H-2 in a medium with liquid pyrolysis products results in a complete consumption of the phenol-cresol fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号