首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed a high-resolution physical map of the long arm of human chromosome 13 using a panel of 94 radiation hybrids. A comprehensive map of 95 chromosome 13-specific sequence tagged sites (STSs) spanning 13q from the presumed centromere at D13Z1 to the known telomere was obtained by multipoint maximum likelihood statistical methods. The 95 markers have an average retention frequency of 10%, with markers closer to the centromere having much greater retention frequencies (22-49%) than distal 13q markers (2-12%) The most likely radiation hybrid map localized the 95 STSs into 54 unique map positions, 34 with odds of 1000:1 or greater; the comprehensive map localized all but 17 STSs with odds exceeding 10:1. The total map length of 13q was 1302 cR9000 (range 6.4-94.4 cR9000) and a physical distance of 98 Mb, so that 1% breakage in the RH panel corresponds to 75 kb. A comparison of the comprehensive RH map to genetic maps of chromosome 13q shows identical locus orders for the common markers, with two exceptions over 1-cM distances. We discuss the possible relationships between the genetic and the radiation hybrid maps.  相似文献   

2.
3.
Chair of Committee for Mouse Chromosome 13  相似文献   

4.
A whole genome radiation hybrid (RH) map of the canine genome was constructed by typing 400 markers, including 218 genes and 182 microsatellites, on a panel of 126 radiation hybrid cell lines. Fifty-seven RH groups have been determined with lod scores greater than 6, and 180 framework landmarks were ordered with odds greater than 1000:1. Average spacing between adjacent markers is 23 cR5000, an estimated physical distance of 3.8 Mb. Fourteen groups have been assigned to 9 of the canine chromosomes, and a comparison of RH and genetic groups allowed the successful bridging of both types of data on one map composed of 31 RH and 13 syntenic RH groups. Comparison of canine, human, mouse, and pig maps underlined regions of conserved synteny. This integrated map, covering an estimated 80% of the dog genome, should prove a powerful tool for localizing and identifiying genes implicated in pathological and phenotypical traits.  相似文献   

5.
A locus on chromosome 17q, designated “BRCA1,” has been identified as a predisposition gene for breast cancer. A panel of chromosome 17–specific radiation-reduced somatic cell hybrid clones has been assembled for high-resolution mapping of chromosome 17. A series of 35 markers, known to span the BRCA1 locus, were tested against this hybrid panel by PCR assays. Statistical analysis of these data yields a BRCA1 radiation hybrid map at a density sufficient to initiate YAC cloning and pulsed-field gel electrophoretic mapping of the candidate region. In addition, many of the markers reveal genetic polymorphisms and may be tested in breast cancer families and in loss-of-heterozygosity studies of sporadic breast cancers to better define the BRCA1 gene candidate region.  相似文献   

6.
In recent years, maps of mammalian genomes have been acquiring increasingly higher resolution. Integration of maps of different types has become possible. As a tool in integrating maps of mammalian genomes of different types, high-resolution mapping with radiation-induced hybrids (RH) is used. Here, we present an RH6000 map of the short arm of porcine chromosome 2. The map contains 15 microsatellites and five genes (for parathyroid hormone, lactate dehydrogenase A, myogenic factor, follicle-stimulating hormone beta, and calpain I). The RH panel was obtained on the basis of a hybrid cell line bearing the single porcine chromosome 2 against the background of mink chromosomes. The mean frequency of preserving markers examined in the panel was 18.3%. Integration of four genes in the panel and a comparison of gene order in homeologous regions of human and porcine chromosomes are presented.  相似文献   

7.
The nervous (nr) mutant mouse displays two gross recessive traits: both an exaggeration of juvenile hyperactivity and a pronounced ataxia become apparent during the third and fourth postnatal weeks. Using an intersubspecific intercross, we have established a high-resolution map of a segment of mouse Chromosome 8 that places thenrlocus in a genomic segment defined byD8Rck1on the centromeric end andD8Mit3on the telomeric end. This map position places thenrlocus within the BALB/cGr congenic region of the C3HeB/FeJ-nrstrain, confirming the accuracy of our study. We used this map position to identify and evaluate three genes—ankyrin 1, cortexin, and farnesyltransferase—as candidates for thenrgene. These three genes were eliminated from consideration but allowed us to establish the conservation of synteny between the region containing thenrlocus and a segment of the short arm of human chromosome 8 (8p21–p11.2). Finally, the incomplete penetrance of thenrphenotype led us to perform a screen for modifier loci, and we present evidence that such a nervous modifier locus may exist on mouse Chromosome 5.  相似文献   

8.
Natural resistance of inbred mouse strains to infection withLegionella pneumophilais controlled by the expression of a single dominant gene on chromosome 13, designatedLgn1.The genetic difference atLgn1is phenotypically expressed as the presence or absence of intracellular replication ofL. pneumophilain host macrophages. In our effort to identify theLgn1gene by positional cloning, we have generated a high-resolution linkage map of theLgn1chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J × C57BL/6J) × A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J ×Mus spretusinterspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping theLgn1region. Combined pedigree analyses for the 5.4-cM segment overlappingLgn1indicated the locus order and the interlocus distances (in cM):D13Mit128–(1.4)–D13Mit194–(0.1)–D13Mit147–(0.9)–D13Mit36–(0.9)–D13Mit146–(0.2)–Lgn1/D13Mit37–(1.0)–D13Mit70.Additional genetic linkage studies of markers not informative in the A/J × C57BL/6J cross positionedD13Mit30, -72, -195,and-203, D13Gor4, D13Hun35,andMtap5in the immediate vicinity of theLgn1locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene.  相似文献   

9.
Interspecific backcross animals from a cross between C57BL/6J and Mus spretus mice were used to generate a comprehensive linkage map of mouse chromosome 11. The relative map positions of genes previously assigned to mouse chromosome 11 by somatic cell hybrid or genetic backcross analysis were determined (Erbb, Rel, 11-3, Csfgm, Trp53-1, Evi-2, Erba, Erbb-2, Csfg, Myhs, Cola-1, Myla, Hox-2 and Pkca). We also analyzed genes that we suspected would map to chromosome 11 by virtue of their location in human chromosomes and the known linkage homologies that exist between murine chromosome 11 and human chromosomes (Mpo, Ngfr, Pdgfr and Fms). Two of the latter genes, Mpo and Ngfr, mapped to mouse chromosome 11. Both genes also mapped to human chromosome 17, extending the degree of linkage conservation observed between human chromosome 17 and mouse chromosome 11. Pdgfr and Fms, which are closely linked to II-3 and Csfgm in humans on chromosome 5, mapped to mouse chromosome 18 rather than mouse chromosome 11, thereby defining yet another conserved linkage group between human and mouse chromosomes. The mouse chromosome 11 linkage map generated in these studies substantially extends the framework for identifying homologous genes in the mouse that are involved in human disease, for elucidating the genes responsible for several mouse mutations, and for gaining insights into chromosome evolution and genome organization.  相似文献   

10.
Using interspecific crosses between BALB/c and Mus spretus (SEG) mice, the murine reeler (rl) gene was mapped to the proximal region of chromosome 5 between the hepatocyte growth factor gene (Hgf) and the D5Mit66 microsatellite. The following order was defined: (centromere)-Cchl2a/Hgf-D5Mit1-D5Nam1/D5Nam2 - rl/D5Mit61 - D5Mit72 - Xmv45 - Htr5a - Peplb - D5Nam3-D5Mit66. Estimated distances between reeler and the nearest flanking markers D5Nam1 and D5Mit72 are 1.5 and 1.0 cM, respectively (95% confidence level), suggesting that the region could be physically mapped using a manageable number of YAC clones.  相似文献   

11.
The recently described homeodomain protein ARIX is expressed specifically in noradrenergic cell types of the sympathetic nervous system, brain, and adrenal medulla. ARIX interacts with regulatory elements of the genes encoding the noradrenergic biosynthetic enzymes tyrosine hydroxylase and dopamine β-hydroxylase, suggesting a role for ARIX in expression of the noradrenergic phenotype. In the study described here, the mouse and human ARIX genes are mapped. Using segregation analysis of two panels of mouse backcross DNA, mouseArixwas positioned approximately 50 cM distal to the centromere of chromosome 7, nearHbb.HumanARIXwas positioned through analysis of somatic cell hybrids and fluorescencein situhybridization of human metaphase chromosomes to chromosome 11q13.3–q13.4. These map locations extend and further define regions of conserved synteny between mouse and human genomes and identify a new candidate gene for inherited developmental disorders linked to human 11q13.  相似文献   

12.
We have used a panel of somatic cell hybrids containing different rearrangements of human chromosome 13 to integrate genetic and physical maps of this chromosome. The positions of 17 translocation/deletion breakpoints on human chromosome 13 have been determined relative to the microsatellite markers on the genetic linkage map compiled by Généthon. Because markers on maps from several other Consortium groups have also been analyzed using many of the same hybrids, it was possible to relate these with the Généthon map. The position of all of the chromosome breakpoints have been placed, wherever possible, between two adjacent markers on the genetic linkage maps using PCR analysis for the presence/absence of the markers in the somatic cell hybrids. The positions of the breakpoints have already been determined cytogenetically, and some of these breakpoints are located at landmark positions on the chromosome. The relative density of markers along the chromosome differs between independently derived maps, and, based on the known locations of certain breakpoints in the physical map, inconsistencies in the genetic maps have been identified.  相似文献   

13.
Rmc1, the cellular receptor for the polytropic class of murine retroviruses, determines the tissue tropism of the virus and therefore plays a critical role in the pathogenesis of polytropic virus-induced leukemia. Previously we reported the physical mapping of this gene to a 5-cM region of mouse chromosome 1 and the construction of a yeast artificial chromosome (YAC) contig across this region. In this report we describe the refinement of the Rmc1 candidate region to approximately 600 kb and the generation of an integrated somatic cell hybrid, YAC, and bacterial artificial chromosome contig spanning the region. A number of genes and loci were physically ordered along the chromosome, including a recently identified candidate for Rmc1.  相似文献   

14.
Despite abundant library resources for many organisms, physical mapping of these organisms has been seriously limited due to lack of efficient library screening techniques. We have developed a highly efficient strategy for large-scale screening of genomic libraries based on multiplex oligonucleotide hybridization on high-density genomic filters. We have applied this strategy to generate a bacterial artificial chromosome (BAC) anchored map of mouse chromosome 11. Using the MIT mouse SSLP data, 320 pairs of oligonucleotide probes were designed with an “overgo” computer program that selects new primer sequences that avoid the microsatellite repeat. BACs identified by these probes are automatically anchored to the chromosome. Ninety-two percent of the probes identified positive clones from a 5.9-fold coverage mouse BAC library with an average of 7 positive clones per marker. An average of 4.2 clones was confirmed for 204 markers by PCR. Our data show that a large number of clones can be efficiently isolated from a large genomic library using this strategy with minimal effort. This strategy will have wide application for large-scale mapping and sequencing of human and other large genomes.  相似文献   

15.
S. H. Pilder  M. F. Hammer    L. M. Silver 《Genetics》1991,129(1):237-246
The effects of heterospecific combinations of mouse chromosome 17 on male fertility and transmission ratio were investigated through a series of breeding studies. Animals were bred to carry complete chromosome 17 homologs, or portions thereof, from three different sources-Mus domesticus, Mus spretus and t haplotypes. These chromosome 17 combinations were analyzed for fertility within the context of a M. domesticus or M. spretus genetic background. Two new forms of hybrid sterility were identified. First, the heterospecific combination of M. spretus and t haplotype homologs leads to complete male sterility on both M. spretus and M. domesticus genetic backgrounds. This is an example of symmetrical hybrid sterility. Second, the presence of a single M. domesticus chromosome 17 homolog within a M. spretus background causes sterility, however, the same combination of chromosome 17 homologs does not cause sterility within the M. domesticus background. This is a case of asymmetrical hybrid sterility. Through an analysis of recombinant chromosomes, it was possible to map the M. domesticus, M. spretus and t haplotype alleles responsible for these two hybrid sterility phenotypes to the same novel locus (Hybrid sterility-4). Previous structural studies had led to the hypothesis that the ancestral t haplotype originated through an introgression event from M. spretus or a related species. If this were true, one might expect that (1) M. spretus homologs would be transmitted at a non-Mendelian ratio within the M. domesticus background, and (2) t haplotypes would be transmitted at a ratio closer to Mendelian within the M. spretus background.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
19.
Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号