首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《农业工程》2014,34(6):302-310
Soil acidification is defined as the process in which exchangeable cations are leaching and soil H+ concentration is raising thereby increases soil acidity. Changes in soil pH value and acid neutralizing capacity are mainly indicators of soil acidification. Soil acidification is considered to be a serious ecological and environmental issue, which not only reduces soil quality, but also decreases biodiversity of forest ecosystem and induces forest decline. With nitrogen (N) deposition rapidly increasing, its contribution to soil acidification becomes a major concern in the world. However, the impact of increased N deposition on soil acidification is not well addressed highlighting the need for further attention to the issue. In this paper, the studies on forest soil acidification induced by N deposition were reviewed. The factors related to soil acidification driven by N deposition were classified and discussed, which included soil acidic buffering capacity, N components in atmospheric N deposition, climate, plant species in forests, and N status in ecosystem. Iron (Fe) buffering phase and the consequent Fe toxicity occurring to the acidified soil caused by high N deposition were concerned. The scarcity of phosphorus (P) element induced by soil acidification was particularly emphasized. The research methods used to study soil acidification driven by N deposition were also evaluated. In the end we stressed the importance of the study on soil acidification especially in tropical and subtropical regions driven by N deposition and its mechanisms. This paper can serve for maintaining sustainable forest and agricultural ecosystems.  相似文献   

2.
Atmospheric nitrogen (N) deposition in subtropical metropolitan regions has increased greatly because of rapid urbanization, and such increase could lead to N-related changes in soil properties and plant diversity in remnant forests of urban ecosystems. To investigate the pattern of atmospheric N deposition along an urban?Crural gradient in metropolitan Guangzhou, southern China, and to assess the potential influence of N deposition on soil properties and understory plant diversity in remnant forests, precipitation, and soil samples were collected and vegetation was surveyed from four forest sites between March 2010 and March 2011. The atmospheric inorganic nitrogen deposition (DIN) decreased with increasing distance from the urban center: DIN inputs were 43.3, 41.2, 35.2, and 30.1?kg?N?ha?1?year?1 in two urban sites, a suburban site and a rural site, respectively. However, forest soil N status (NH4 +-N, NO3 ?-N, and total nitrogen) showed the opposite pattern. Understory herb-layer diversity was negatively correlated to DIN input and positively correlated to soil calcium (Ca) and potassium (K) concentrations and pH; with highest herb-layer diversity found in the rural site receiving the lowest amount of DIN input. These results indicated that higher DIN along with soil acidification and leaching of base cations (Ca and K) might change the current N status and increase nutrients leaching and thereby cause reductions in understory plant diversity. A regional policy linking atmospheric pollution and land protection is needed to protect the most N-sensitive herb species (e.g., forbs and ferns) in these remnant forests.  相似文献   

3.
Dissolved organic nitrogen (DON) has recently been recognized as an important component of terrestrial N cycling, especially under N-limited conditions; however, the effect of increased atmospheric N deposition on DON production and loss from forest soils remains controversial. Here we report DON and dissolved organic carbon (DOC) losses from forest soils receiving very high long-term ambient atmospheric N deposition with or without additional experimental N inputs, to investigate DON biogeochemistry under N-saturated conditions. We studied an old-growth forest, a young pine forest, and a young mixed pine/broadleaf forest in subtropical southern China. All three forests have previously been shown to have high nitrate (NO3) leaching losses, with the highest loss found in the old-growth forest. We hypothesized that DON leaching loss would be forest specific and that the strongest response to experimental N input would be in the N-saturated old-growth forest. Our results showed that under ambient deposition (35–50 kg N ha−1 y−1 as throughfall input), DON leaching below the major rooting zone in all three forests was high (6.5–16.9 kg N ha−1 y−1). DON leaching increased 35–162% following 2.5 years of experimental input of 50–150 kg N ha−1 y−1. The fertilizer-driven increase of DON leaching comprised 4–17% of the added N. A concurrent increase in DOC loss was observed only in the pine forest, even though DOC:DON ratios declined in all three forests. Our data showed that DON accounted for 23–38% of total dissolved N in leaching, highlighting that DON could be a significant pathway of N loss from forests moving toward N saturation. The most pronounced N treatment effect on DON fluxes was not found in the old-growth forest that had the highest DON loss under ambient conditions. DON leaching was highly correlated with NO3 leaching in all three forests. We hypothesize that abiotic incorporation of excess NO3 (through chemically reactive NO2) into soil organic matter and the consequent production of N-enriched dissolved organic matter is a major mechanism for the consistent and large DON loss in the N-saturated subtropical forests of southern China. Dr. YT Fang performed research, analyzed data, and wrote the paper; Prof. WX Zhu participated in the initial experimental design, analyzed data, and took part in writing the paper; Prof. P Gundersen conceived the study and took part in writing; Prof. JM Mo and Prof. GY Zhou conceived study; Prof. M Yoh analyzed part of the data and contributed to the development of DON model.  相似文献   

4.
Elevated anthropogenic nitrogen (N) deposition is suggested to affect ecosystem phosphorus (P) cycling through altered biotic P demand and soil acidification. To date, however, there has been little information on how long-term N deposition regulates P fluxes in tropical forests, where P is often depleted. To address this question, we conducted a long-term N addition experiment in a mature tropical forest in southern China, using the following N treatments: 0, 50, 100, and 150 kg N ha?1 year?1. We hypothesized that (i) tropical forest ecosystems have conservative P cycling with low P output, and (ii) long-term N addition decreases total dissolved phosphorus (TDP) leaching losses due to reduced litter decomposition rates and stimulated P sorption deriving from accelerated soil acidification. As hypothesized, we demonstrated a closed P cycling with low leaching outputs in our forest. Under experimental N addition, TDP flux in throughfall was significantly reduced, suggesting that N addition may result in a less internal P recycling. Contrary to our hypothesis, N addition did not decrease TDP leaching, despite reduced litter decomposition and accelerated soil acidification. We find that N addition might have negative impacts on biological P uptake without affecting TDP leaching, and that the amount of TDP leaching from soil could be lower than a minimum concentration for TDP retention. Overall, we conclude that long-term N deposition does not necessarily decrease P effluxes from tropical forest ecosystems with conservative P cycling.  相似文献   

5.
模拟氮沉降下南方针叶林红壤的养分淋溶和酸化   总被引:8,自引:0,他引:8  
以中国科学院红壤生态实验站林草生态试验区针叶林红壤为研究对象,在恒温(20 ℃)条件下,通过大土柱(直径10 cm、高60 cm),8个月间隙性淋溶试验模拟研究了不同氮输入量(0、7.8、26和52 mg N/月/柱)对针叶林红壤NO3-、NH4+、H+和土壤盐基离子(Ca2+、Mg2+、K+、Na+)淋溶以及土壤酸化的影响.结果表明,土壤交换态盐基总量、Ca2+和Mg2+淋溶量随氮输入量的增加而增加,土壤交换态Na+和K+则无明显影响.4种N输入处理的土壤交换态盐基总量净淋溶(淋溶出的盐基与淋洗液累计输入的盐基之差)分别占土壤交换性盐基总量的13.9%、18.6%、31.8% 和57.9%,土壤交换态Ca2+净淋溶分别占土壤交换性Ca2+总量的19.6%、25.8%、45.3%和84.8%,土壤交换态Mg2+净淋溶分别占土壤交换性Mg2+总量的4.4%、6.1%、10.9%和17.1%.随氮输入量增加,表层土壤pH值逐渐下降,4种N输入处理的表层土壤pH(KCl)分别为3.85、3.84、3.80和3.75;随氮输入量增加,淋溶液中无机氮、NO3-和H+逐渐增加.氮沉降可促进针叶林红壤的有机氮矿化,加速养分淋失和土壤酸化.  相似文献   

6.
A change in land use from agriculture to forest generally increases soil acidity. However, it remains unclear to what extent plant traits can enhance or mitigate soil acidification caused by atmospheric deposition. Soil acidification is detrimental for the survival of many species. An in‐depth understanding of tree species‐specific effects on soil acidification is therefore crucial, particularly in view of the predicted global increases in acidifying nitrogen (N) deposition. Here, we report soil acidification rates in a chronosequence of broadleaved deciduous forests planted on former arable land in Belgium. This region receives one of the highest loads of potentially acidifying atmospheric deposition in Europe, which allowed us to study a ‘worst case scenario’. We show that less than four decades of forest development caused significant soil acidification. Atmospheric deposition undoubtedly and unequivocally drives postagricultural forests towards more acidic conditions, but the rate of soil acidification is also determined by the tree species‐specific leaf litter quality and litter decomposition rates. We propose that the intrinsic differences in leaf litter quality among tree species create fundamentally different nutrient cycles within the ecosystem, both directly through the chemical composition of the litter and indirectly through its effects on the size and composition of earthworm communities. Poor leaf litter quality contributes to the absence of a burrowing earthworm community, which retards leaf litter decomposition and, consequently, results in forest‐floor build‐up and soil acidification. Also nutrient uptake and N2 fixation are causing soil acidification, but were found to be less important. Our results highlight the fact that tree species‐specific traits significantly influence the magnitude of human pollution‐induced soil acidification.  相似文献   

7.
Zhang W  Mo J M  Fang Y T  Lu X K  Wang H 《农业工程》2008,28(5):2309-2319
Nitrogen (N) deposition can alter the rates of microbial N- and C- turnover, and thus can affect the fluxes of greenhouse gases (GHG, e.g., CO2, CH4, and N2O) from forest soils. The effects of N deposition on the GHG fluxes from forest soils were reviewed in this paper. N deposition to forest soils have shown variable effects on the soil GHG fluxes from forest, including increases, decreases or unchanged rates depending on forest type, N status of the soil, and the rate and type of atmospheric N deposition. In forest ecosystems where biological processes are limited by N supply, N additions either stimulate soil respiration or have no significant effect, whereas in “N saturated” forest ecosystems, N additions decrease CO2 emission, reduce CH4 oxidation and elevate N2O flux from the soil. The mechanisms and research methods about the effects of N deposition on GHG fluxes from forest soils were also reviewed in this paper. Finally, the present and future research needs about the effects of N deposition on the GHG fluxes from forest soils were discussed.  相似文献   

8.
大气氮沉降与森林生态系统的氮动态   总被引:20,自引:2,他引:20  
肖辉林 《生态学报》1996,16(1):90-99
由于人类活动的影响,若干年代以来大气氮沉降明显增加。在森林地区,大气氮沉降的空间变异性由林分的位置、结构和组成树种所决定。除降雨之外,干沉降和隐藏降水也是大气氮沉降的重要形式。  相似文献   

9.
We assessed the potential impact of global warming resulting from a doubling of preindustrial atmospheric CO2 on soil net N transformations by transferring intact soil cores (0–15 cm) from a high-elevation old-growth forest to a forest about 800 m lower in elevation in the central Oregon Cascade Mountains, USA. The lower elevation site had mean annual air and soil (10-cm mineral soil depth) temperatures about 2.4 and 3.9 °C higher than the high-elevation site, respectively. Annual rates of soil net N mineralization and nitrification more than doubled in soil transferred to the low-elevation site (17.2–36.0 kg N ha–1 and 5.0–10.7 kg NO3–N ha–1, respectively). Leaching of inorganic N from the surface soil (in the absence of plant uptake) also increased. The reciprocal treatment (transferring soil cores from the low- to the high-elevation site) resulted in decreases of about 70, 80, and 65% in annual rates of net N mineralization, nitrification, and inorganic N leaching, respectively. Laboratory incubations of soils under conditions of similar temperature and soil water potential suggest that the quality of soil organic matter is higher at the high-elevation site. Similar in situ rates of soil net N transformations between the two sites occurred because the lower temperature counteracts the effects of greater substrate quantity and quality at the high elevation site. Our results support the hypothesis that high-elevation, old-growth forest soils in the central Cascades have higher C and N storage than their low-elevation analogues primarily because low temperatures limit net C and N mineralization rates at higher elevations.  相似文献   

10.
Increased nitrogen deposition has resulted in increased nitrogen pools and nitrogen leaching in European and North American forest soils. The development in Asia in general, and China in particular, suggests increased deposition of reduced nitrogen from changes in agricultural practices and of oxidized nitrogen from rapid growth of the transportation sector. Decreased nitrogen retention in forested areas in the future may cause increased NO3- leaching and, thus, acidification and eutrophication in surface waters. The differences in climate, ecosystems, land use, and deposition history make direct application of knowledge from studies in Europe and North America difficult. In Southwest China the potential for nitrogen mobilization from forest soils may be high because of the warm and humid climate, resulting in high decomposition rates of soil organic matter. However, there are very few data available for quantifying the suspected potential for increased nitrogen leaching in forest ecosystems. Here we present data from two forested catchments, dominated by Masson pine (Pinus massoniana), near Guiyang and Chongqing, respectively, in Southwest China. The present nitrogen deposition is moderate, estimated in the range from 10 to 40 kg N ha(-1) year(-1). The C/N ratios of the soils are generally below 15. Nitrate concentrations in soil water are rather variable in space, with highest values of several hundred microequivalents per liter. The turnover rate of nitrogen in the forest ecosystem is quite high compared to the atmospheric deposition rate. At present, nitrate runoff from the catchments is low and intermediate in Guiyang and Chongqing, respectively. More research is needed to improve our ability to predict future nitrogen leaching from subtropical Asian coniferous forests.  相似文献   

11.
The deposition of nitrogen (N) is high in subtropical forest in South China and it is expected to increase further in the coming decades. To assess effects of increasing deposition on N cycling, we investigated the current N status of two selected 40–45-year-old masson pine-dominated Chinese subtropical forest stands at Tieshanping (TSP, near Chongqing City) and Caijiatang (CJT in Shaoshan, Hunan province), and explored the applicability of several indicators for N status and leaching, suggested for temperate and boreal forest ecosystems. Current atmospheric N deposition to the systems is from 25 to 49 kg ha−1 year−1. The concentration of total N in the upper 15 cm of the soil is from as low as 0.05% in the B2 horizon to as high as 0.53% in the O/A horizon. The concentration of organic carbon (C) varies from 0.74 (B2) to 9.54% (O/A). Pools of N in the upper 15 cm of the soils range from 1460 to 2290 kg N ha−1, where 25–55% of the N pool is in the O/A horizon (upper 3 cm of the soil). Due to a lack of a well-developed continuous O horizon (forest floor), the C/N ratio of this layer cannot be used as an indicator for the N status, as is commonly done in temperate and boreal forests. The net N mineralization rate (mg N g−1 C year−1) in individual horizons correlates significantly with the C/N ratio, which is from as high as 18.2 in the O/A horizon to as low as 11.2 in the B2 horizon. The N2O emission flux from soil is significantly correlated with the KCl extractable NH4+–N in the O/A horizon and with the net nitrification in the upper 15 cm of the soil. However, the spatial and temporal variation of the N2O emission rate is high and rates are small and often difficult to detect in the field. The soil flux density of mineral N, defined as the sum of the throughfall N input rate and the rate of in situ net N mineralization in the upper 15 cm of the soil, i.e., the combination of deposition input and the N status of the system, explains the NO3 leaching potential at 30 cm soil depth best. The seasonality of stream water N concentration at TSP and CJT is climatic and hydrologically controlled, with highest values commonly occurring in the wet growing season and lowest in the dry dormant season. This is different from temperate forest ecosystems, where N saturation is indicated by elevated NO3 leaching in stream water during summer.  相似文献   

12.
Edaphic, foliar, and hydrologic forest nutrient status indicators from 15 mixed conifer forest stands in the Sierra Nevada, San Gabriel Mountains, and San Bernardino National Forest were used to estimate empirical or theoretical critical loads (CL) for nitrogen (N) as a nutrient. Soil acidification response to N deposition was also evaluated. Robust empirical relationships were found relating N deposition to plant N uptake (N in foliage), N fertility (litter C/N ratio), and soil acidification. However, no consistent empirical CL were obtained when the thresholds for parameters indicative of N excess from other types of ecosystems were used. Similarly, the highest theoretical CL for nutrient N calculated using the simple mass balance steady state model (estimates ranging from 1.4-8.8 kg N/ha/year) was approximately two times lower than the empirical observations. Further research is needed to derive the thresholds for indicators associated with the impairment of these mixed conifer forests exposed to chronic N deposition within a Mediterranean climate. Further development or parameterization of models for the calculation of theoretical critical loads suitable for these ecosystems will also be an important aspect of future critical loads research.  相似文献   

13.
Nitrogen deposition contributes to soil acidification in tropical ecosystems   总被引:12,自引:0,他引:12  
Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem functioning, threatening ecosystem health via acidification and eutrophication in temperate and boreal forests across the northern hemisphere. However, response of forest soil acidification to N deposition has been less studied in humid tropics compared to other forest types. This study was designed to explore impacts of long‐term N deposition on soil acidification processes in tropical forests. We have established a long‐term N‐deposition experiment in an N‐rich lowland tropical forest of Southern China since 2002 with N addition as NH4NO3 of 0, 50, 100 and 150 kg N ha?1 yr?1. We measured soil acidification status and element leaching in soil drainage solution after 6‐year N addition. Results showed that our study site has been experiencing serious soil acidification and was quite acid‐sensitive showing high acidification (pH(H2O)<4.0), negative water‐extracted acid neutralizing capacity (ANC) and low base saturation (BS,< 8%) throughout soil profiles. Long‐term N addition significantly accelerated soil acidification, leading to depleted base cations and decreased BS, and further lowered ANC. However, N addition did not alter exchangeable Al3+, but increased cation exchange capacity (CEC). Nitrogen addition‐induced increase in SOC is suggested to contribute to both higher CEC and lower pH. We further found that increased N addition greatly decreased soil solution pH at 20 cm depth, but not at 40 cm. Furthermore, there was no evidence that Al3+ was leaching out from the deeper soils. These unique responses in tropical climate likely resulted from: exchangeable H+ dominating changes of soil cation pool, an exhausted base cation pool, N‐addition stimulating SOC production, and N saturation. Our results suggest that long‐term N addition can contribute measurably to soil acidification, and that shortage of Ca and Mg should receive more attention than soil exchangeable Al in tropical forests with elevated N deposition in the future.  相似文献   

14.
Aim The aim of this work was to estimate on a regional scale the effects of nitrogen (N) deposition and harvest intensity on N‐budgets in forest soils as a basis for strategies of emission reduction and sustainable forest management methods. Location The calculations were applied to Sweden, a country with a managed forest area of 23 × 106 ha. Methods Mass balance calculations, including N‐deposition, N‐fixation, N‐loss through harvest, and N‐leaching, were performed on a GIS platform using 5 × 5 km grids. Modelled deposition data together with spatial data obtained from the National Forest Inventory served as the basis for the calculations. Four different scenarios were run: a ‘base scenario’ involving present deposition and conventional forestry (stem harvest only); a ‘whole‐tree harvesting scenario’ with present deposition and the harvesting of stems, branches and needles; a ‘decreased deposition scenario’; and a ‘whole‐tree harvesting and decreased deposition scenario’. Results There was a sharp N‐accumulation gradient with an increase in accumulation in the direction of the south‐western part of Sweden. In the ‘base scenario’, N‐accumulation appeared in the country as a whole, apart from certain small areas in the northern part. Whole‐tree harvesting led to net losses in extensive areas located mainly in northern and central Sweden. In most parts of the country, whole‐tree harvesting combined with decreased deposition was found to result in net losses. Main conclusions The intensity of the forestry has a strong impact on the N‐budget. Conventional forestry in combination with the present deposition level results in a high net accumulation of N in the south‐western parts of Sweden and accordingly, in a risk of unwanted environmental effects such as increased N‐leaching. With whole‐tree harvesting, the N‐balance is negative in parts of Sweden, mainly in the northern and central parts. N‐fertilization may become necessary there if the present level of forest production is to be maintained.  相似文献   

15.
Nitrogen (N) fertilizer applied in the NH4+ form results in some degree of soil acidification, which could influence nutrient availability to plants and nutrient losses through leaching. Effects of various N rates (0 – 168 kg N ha-1 yr-1) on soil acidification and nutrient availability were investigated in a Riviera fine sand with 26-year-old white Marsh grapefruit (Citrus paradisi MacFadyen) trees. Soil pH significantly decreased with increasing NH4–N rates. Application of 112 kg N ha-1 yr-1 for four years decreased the pH by 0.7 to 1.7 unit. Soil acidification was greater when the NH4+ form of N fertilizer was applied as dry soluble granular material compared to fertigation or controlled release forms. The marked effect of NH4–N fertilization on the pH of the Riviera fine sand was due to its low buffering capacity. Soil acidification increased the concentration of extractable Fe and P but decreased that of K, Zn and Mn. Soil pH was positively correlated with concentration of Ca, but negatively with concentrations of Fe, Mn and Zn in six-month-old spring flush leaves of the grapefruit trees. Leaf P concentrations, however, were poorly correlated with soil pH. This study also demonstrated an increase in leaching of P and K below the grapefruit trees rootzone with a decrease in soil pH.  相似文献   

16.
Deciduous forests may respond differently from coniferous forests to the anthropogenic deposition of nitrogen (N). Since fungi, especially ectomycorrhizal (EM) fungi, are known to be negatively affected by N deposition, the effects of N deposition on the soil microbial community, total fungal biomass and mycelial growth of EM fungi were studied in oak-dominated deciduous forests along a nitrogen deposition gradient in southern Sweden. In-growth mesh bags were used to estimate the production of mycelia by EM fungi in 19 oak stands in the N deposition gradient, and the results were compared with nitrate leaching data obtained previously. Soil samples from 154 oak forest sites were analysed regarding the content of phospholipid fatty acids (PLFAs). Thirty PLFAs associated with microbes were analysed and the PLFA 18:2ω6,9 was used as an indicator to estimate the total fungal biomass. Higher N deposition (20 kg N ha−1 y−1 compared with 10 kg N ha−1 y−1) tended to reduce EM mycelial growth. The total soil fungal biomass was not affected by N deposition or soil pH, while the PLFA 16:1ω5, a biomarker for arbuscular mycorrhizal (AM) fungi, was negatively affected by N deposition, but also positively correlated to soil pH. Other PLFAs positively affected by soil pH were, e.g., i14:0, a15:0, 16:1ω9, a17:0 and 18:1ω7, while some were negatively affected by pH, such as i15:0, 16:1ω7t, 10Me17:0 and cy19:0. In addition, N deposition had an effect on the PLFAs 16:1ω7c and 16:1ω9 (negatively) and cy19:0 (positively). The production of EM mycelia is probably more sensitive to N deposition than total fungal biomass according to the fungal biomarker PLFA 18:2ω6,9. Low amounts of EM mycelia covaried with increased nitrate leaching, suggesting that EM mycelia possibly play an important role in forest soil N retention at increased N input.  相似文献   

17.
18.
Human activity is drastically altering global nitrogen (N) availability. The extent to which ecosystems absorb additional N—and with it, additional CO2—depends on whether net primary production (NPP) is N-limited, so it is important to understand conditions under which N can limit NPP. Here I use a general dynamical model to show that N limitation at steady-state—such as in old-growth forests—depends on the balance of biotically controllable versus uncontrollable N inputs and losses. Steady-state N limitation is only possible when uncontrollable inputs (for example, atmospheric deposition) exceed controllable losses (for example, leaching of plant-available soil N), which is the same as when uncontrollable losses (for example, leaching of plant-unavailable soil N) exceed controllable inputs (biological N fixation). These basic results are robust to many model details, such as the number of plant-unavailable soil N pools and the number and type of N fixers. Empirical data from old-growth tropical (Hawai’i) and temperate (Oregon, Washington, Chile) forests support the model insights. Practically, this means that any N fixer—symbiotic or not—could overcome ecosystem N limitation, so understanding N limitation requires understanding controls on all N fixers. Further, comparing losses of plant-available N to abiotic inputs could offer a rapid diagnosis of whether ecosystems can be N-limited, although the applicability of this result is constrained to ecosystems with a steady-state N cycle such as old-growth forests largely devoid of disturbance.  相似文献   

19.
Studies in unpolluted, old-growth forests in the coastal range of southern Chile (42°30′S) can provide a baseline for understanding how forest ecosystems are changing due to the acceleration of nitrogen (N) inputs that has taken place over the last century. Chilean temperate forests, in contrast to their northern hemisphere counterparts, exhibit extremely low losses of inorganic N to stream waters. The objectives of this study were (a) to determine whether low inorganic N outputs in these forests were due to low rates of N mineralization or nitrification, and (b) to examine how biodiversity (defined as number of dominant tree species) and forest structure influence N mineralization and overall patterns of N cycling. Studies were conducted in a species-poor, conifer-dominated (Fitzroya cupressoides) forest with an even-aged canopy, and in a mixed-angiosperm (Nothofagus nitida) forest with a floristically more diverse and unstable canopy. Nitrogen mineralization rates measured in laboratory assays varied seasonally, reaching 6.0 μg N/g DW/day in both forests during late summer. Higher values were related to higher microbial activity, larger pools of labile inorganic N, and increased fine litter inputs. Field assays, conducted monthly, indicated positive net flux from N mineralization mainly from December to January in both forests. Annual net flux of N from mineralization varied from 20 to 23 kg/ha/year for the Fitzroya forest and from 31 to 37 kg/ha/year for the Nothofagus forest. Despite low losses of inorganic N to streams, N mineralization and nitrification are not inhibited in these forests, implying the existence of strong sinks for NO3 in the ecosystem. Field N mineralization rates were two times higher in the Nothofagus forest than in the Fitzroya forest, and correlated with greater N input via litterfall, slightly higher soil pH, and narrower carbon (C)–nitrogen ratios of soils and litter in the former. Differences in N mineralization between the two forest types are attributed to differences in biotic structure, stand dynamics, and site factors. Median values of net N mineralization rates in these southern hemisphere forests were lower than median rates for forests in industrialized regions of North America, such as the eastern and central USA. We suggest that these high N mineralization rates may be a consequence of enhanced atmospheric N deposition.  相似文献   

20.
Accelerated nitrogen inputs — A new problem or a new perspective?   总被引:3,自引:0,他引:3  
This paper considers whether new problems are arising in forest ecosystems due to increased levels of inorganic N deposition from the atmosphere, or whether there are no new problems, just a change of perception. Deposition of N has indeed increased. Wet deposition rates are reasonably quantified, but the rates of dry deposition to forests are largely unknown. Current transport and deposition models are probably under-estimating N deposition to forests. Consideration of possible effects of enhanced N deposition reveals with varying degrees of certainty that there may be effects due to high N in biomass, high uptake rates, leaching of nitrate and consequent acidification, and an overall increase in N availability. Forest ecosystems are not well-enough understood to set a critical load for N deposition, but enough is known to define some upper limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号