首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of death-associated protein kinase (DAPK) occurs via dephosphorylation of Ser-308 and subsequent association of calcium/calmodulin. In this study, we confirmed the existence of the alternatively spliced human DAPK-beta, and we examined the levels of DAPK autophosphorylation and DAPK catalytic activity in response to tumor necrosis factor or ceramide. It was found that DAPK is rapidly dephosphorylated in response to tumor necrosis factor or ceramide and then subsequently degraded via proteasome activity. Dephosphorylation and activation of DAPK are shown to temporally precede its subsequent degradation. This results in an initial increase in kinase activity followed by a decrease in DAPK expression and activity. The decline in DAPK expression is paralleled with increased caspase activity and cell apoptosis. These results suggest that the apoptosis regulatory activities mediated by DAPK are controlled both by phosphorylation status and protein stability.  相似文献   

2.
Pin1 is a phospho-specific prolyl isomerase that regulates numerous key signaling molecules and whose deregulation contributes to disease notably cancer. However, since prolyl isomerases are often believed to be constitutively active, little is known whether and how Pin1 catalytic activity is regulated. Here, we identify death-associated protein kinase 1 (DAPK1), a known tumor suppressor, as a kinase responsible for phosphorylation of Pin1 on Ser71 in the catalytic active site. Such phosphorylation fully inactivates Pin1 catalytic activity and inhibits its nuclear location. Moreover, DAPK1 inhibits the ability of Pin1 to induce centrosome amplification and cell transformation. Finally, Pin1 pSer71 levels are positively correlated with DAPK1 levels and negatively with centrosome amplification in human breast cancer. Thus, phosphorylation of Pin1 Ser71 by DAPK1 inhibits its catalytic activity and cellular function, providing strong evidence for an essential role of the Pin1 enzymatic activity for its cellular function.  相似文献   

3.
Death-associated protein kinase (DAPK) is a multi-domain Ser/Thr protein kinase with an important role in apoptosis regulation. In these studies we have identified a DAPK-interacting protein called DIP-1, which is a novel multi-RING finger protein. The RING finger motifs of DIP-1 have E3 ligase activity that can auto-ubiquitinate DIP-1 in vitro. In vivo, DIP-1 is detected as a polyubiquitinated protein, suggesting that the intracellular levels of DIP-1 are regulated by the ubiquitin-proteasome system. Transient expression of DIP-1 in HeLa cells antagonizes the anti-apoptotic function of DAPK to promote a caspase-dependent apoptosis. These studies also demonstrate that DAPK is an in vitro and in vivo target for ubiquitination by DIP-1, thereby providing a mechanism by which DAPK activities can be regulated through proteasomal degradation.  相似文献   

4.
cGMP-dependent protein kinase-I (cGK-I) induces apoptosis in various cancer cell lines. However, the signaling mechanisms involved remain unknown. Using protein microarray technology, we identified a novel cGK substrate, death-associated protein kinase 2 (DAPK2), which is a Ca(2+)/calmodulin-regulated serine/threonine kinase. cGK-I phosphorylated DAPK2 at Ser(299), Ser(367) and Ser(368). Interestingly, a phospho-mimic mutant, DAPK2 S299D, significantly enhanced its kinase activity in the absence of Ca(2+)/calmodulin, while a S367D/S368D mutant did not. Overexpression of DAPK2 S299D also resulted in a twofold increase in apoptosis of human breast cancer MCF-7 cells as compared with wild-type DAPK2. These results suggest that DAPK2 is one of the targets of cGK-I in apoptosis induction.  相似文献   

5.
Death-associated protein kinase (DAPK) is a pro-apoptotic, calmodulin (CaM)-regulated protein kinase whose mRNA levels increase following cerebral ischemia. However, the relationship between DAPK catalytic activity and cerebral ischemia is not known. This knowledge is critical as DAPK function is dependent on the catalytic activity of its kinase domain. Consequently, we examined DAPK catalytic activity in a rat model of neonatal cerebral hypoxia-ischemia (HI). An increase in DAPK specific activity was found in homogenates of the hippocampus from the injured right hemisphere, compared to the uninjured left hemisphere, 7 days after injury. The results raised the possibility that an upregulation of DAPK activity might be associated with the recovery phase of HI, during which neuronal repair and differentiation are initiated. Therefore, we examined the change of DAPK in an experimentally tractable cell culture model of neuronal differentiation. We found that DAPK catalytic activity and protein levels increase after nerve growth factor (NGF)-induced differentiation of rat PC12 cells. These results suggest that DAPK may have a previously unappreciated role in neuronal development or recovery from injury, and that potential future therapies targeting DAPK should consider a restricted time window.  相似文献   

6.
The viability of vertebrate cells depends on a complex signaling interplay between survival factors and cell-death effectors. Subtle changes in the equilibrium between these regulators can result in abnormal cell proliferation or cell death, leading to various pathological manifestations. Death-associated protein kinase (DAPK) is a multidomain calcium/calmodulin (CaM)-dependent Ser/Thr protein kinase with an important role in apoptosis regulation and tumor suppression. The molecular signaling mechanisms regulating this kinase, however, remain unclear. Here, we show that DAPK is phosphorylated upon activation of the Ras-extracellular signal-regulated kinase (ERK) pathway. This correlates with the suppression of the apoptotic activity of DAPK. We demonstrate that DAPK is a novel target of p90 ribosomal S6 kinases (RSK) 1 and 2, downstream effectors of ERK1/2. Using mass spectrometry, we identified Ser-289 as a novel phosphorylation site in DAPK, which is regulated by RSK. Mutation of Ser-289 to alanine results in a DAPK mutant with enhanced apoptotic activity, whereas the phosphomimetic mutation (Ser289Glu) attenuates its apoptotic activity. Our results suggest that RSK-mediated phosphorylation of DAPK is a unique mechanism for suppressing the proapoptotic function of this death kinase in healthy cells as well as Ras/Raf-transformed cells.  相似文献   

7.
Death-associated protein kinase (DAPK) is a calmodulin-regulated serine/threonine kinase and possesses apoptotic and tumor-suppressive functions. However, it is unclear whether DAPK elicits apoptosis-independent activity to suppress tumor progression. We show that DAPK inhibits random migration by reducing directional persistence and directed migration by blocking cell polarization. These effects are mainly mediated by an inhibitory role of DAPK in talin head domain association with integrin, thereby suppressing the integrin–Cdc42 polarity pathway. We present evidence indicating that the antimigratory effect of DAPK represents a mechanism through which DAPK suppresses tumors. First, DAPK can block migration and invasion in certain tumor cells that are resistant to DAPK-induced apoptosis. Second, using an adenocarcinoma cell line and its highly invasive derivative, we demonstrate DAPK level as a determining factor in tumor invasiveness. Collectively, our study identifies a novel function of DAPK in regulating cell polarity during migration, which may act together with its apoptotic function to suppress tumor progression.  相似文献   

8.
Epilepsy is a chronic encephalopathy and one of the most common neurological disorders. Death-associated protein kinase 1 (DAPK1) expression has been shown to be upregulated in the brains of human epilepsy patients compared with those of normal subjects. However, little is known about the impact of DAPK1 on epileptic seizure conditions. In this study, we aim to clarify whether and how DAPK1 is regulated in epilepsy and whether targeting DAPK1 expression or activity has a protective effect against epilepsy using seizure animal models. Here, we found that cortical and hippocampal DAPK1 activity but not DAPK1 expression was increased immediately after convulsive pentylenetetrazol (PTZ) exposure in mice. However, DAPK1 overexpression was found after chronic low-dose PTZ insults during the kindling paradigm. The suppression of DAPK1 expression by genetic knockout significantly reduced PTZ-induced seizure phenotypes and the development of kindled seizures. Moreover, pharmacological inhibition of DAPK1 activity exerted rapid antiepileptic effects in both acute and chronic epilepsy mouse models. Mechanistically, PTZ stimulated the phosphorylation of NR2B through DAPK1 activation. Combined together, these results suggest that DAPK1 regulation is a novel mechanism for the control of both acute and chronic epilepsy and provide new therapeutic strategies for the treatment of human epilepsy.  相似文献   

9.
Death associated protein kinase (DAPK) is a positive regulator in tumor necrosis factor α (TNFα)‐induced apoptotic pathway, and DAPK expression is lost in cancer cells. In the vasculature, misdirected apoptosis in endothelial cells leads to pathological conditions such as inflammation and physiological shear stress is protective against apoptosis. Using bovine aortic endothelial cells, we found that DAPK expression increased, while the auto‐inhibitory phosphorylation of serine 308 decreased with shear stress at 12 dynes/cm2 for 6 h. Quantitative RT‐PCR revealed a corresponding increase in DAPK mRNA [P < 0.01]. We found that after 18‐h TNFα induction, shearing cells for another 6 h significantly reduced apoptosis based on TUNEL staining [P < 0.05], although cell necrosis was not affected. Under the same conditions, we observed significantly decreased overall DAPK, as well as phospho‐serine 308 DAPK [P < 0.05] compared to TNFα treatment alone. Caspase‐3 and ‐7 activities downstream of DAPK were also attenuated. Shearing cells alone resulted in enhanced apoptosis, likely due to increased DAPK activity. Our findings were further supported by DAPK siRNA, which yielded contrary results. We present conclusive evidence for the first time that shear stress of up to 6 h up‐regulates DAPK expression and activation. However, in the presence of apoptotic stimuli such as TNFα, shear stress caused decrease in DAPK activity. In fact, long‐term shear stress of 24 h significantly reduced overall DAPK expression. Our findings strongly support a novel role for DAPK in mediating effects of shear stress in suppressing cytokine‐activated apoptosis. J. Cell. Physiol. 227: 2398–2411, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
11.
Dysregulation of the balance between cell proliferation and cell death is a central feature of malignances. Death-associated protein kinase 3 (DAPK3) regulates programmed cell death including apoptosis and autophagy. Our previous study showed that DAPK3 downregulation was detected in more than half of gastric cancers (GCs), which was related to tumor invasion, metastasis, and poor prognosis. However, the precise molecular mechanism underlying DAPK3-mediated tumor suppression remains unclear. Here, we showed that the tumor suppressive function of DAPK3 was dependent on autophagy process. Mass spectrometry, in vitro kinase assay, and immunoprecipitation revealed that DAPK3 increased ULK1 activity by direct ULK1 phosphorylation at Ser556. ULK1 phosphorylation by DAPK3 facilitates the ULK1 complex formation, the VPS34 complex activation, and autophagy induction upon starvation. The kinase activity of DAPK3 and ULK1 Ser556 phosphorylation were required for DAPK3-modulated tumor suppression. The coordinate expression of DAPK3 with ULK1 Ser556 phosphorylation was confirmed in clinical GC samples, and this co-expression was correlated with favorable survival outcomes in patients. Collectively, these findings indicate that the tumor-suppressor roles of DAPK3 in GC are associated with autophagy and that DAPK3 is a novel autophagy regulator, which can directly phosphorylate ULK1 and activate ULK1. Thus, DAPK3 might be a promising prognostic autophagy-associated marker.Subject terms: Tumour-suppressor proteins, Macroautophagy  相似文献   

12.
Death-associated protein kinase (DAPK) is a unique multidomain kinase acting both as a tumor suppressor and an apoptosis inducer. The molecular mechanism underlying the effector function of DAPK is not fully understood, while the role of DAPK in T lymphocyte activation is mostly unknown. DAPK was activated after TCR stimulation. Through the expression of a dominant-negative and a constitutively active form of DAPK in T cells, we found that DAPK negatively regulated T cell activation. DAPK markedly affected T cell proliferation and IL-2 production. We identified TCR-induced NF-kappaB activation as a target of DAPK. In contrast, IL-1beta- and TNF-alpha-triggered NF-kappaB activation was not affected by DAPK. We further found that DAPK selectively modulated the TCR-induced translocation of protein kinase Ctheta, Bcl-10, and IkappaB kinase into membrane rafts. Notably, the effect of DAPK on the raft entry was specific for the NF-kappaB pathway, as other raft-associated molecules, such as linker for activation of T cells, were not affected. Our results clearly demonstrate that DAPK is a novel regulator targeted to TCR-activated NF-kappaB and T cell activation.  相似文献   

13.
The histone deacetylase inhibitor (HDACi) LBH589 has been verified as an effective anticancer agent. The identification and characterization of new targets for LBH589 action would further enhance our understanding of the molecular mechanisms involved in HDACi therapy. The role of the tumor suppressor death-associated protein kinase (DAPK) in LBH589-induced cytotoxicity has not been investigated to date. Stable DAPK knockdown (shRNA) and DAPK overexpressing (DAPK+++) cell lines were generated from HCT116 wildtype colon cancer cells. LBH589 inhibited cell proliferation, reduced the long-term survival, and up-regulated and activated DAPK in colorectal cancer cells. Moreover, LBH589 significantly suppressed the growth of colon tumor xenografts and in accordance with the in vitro studies, increased DAPK levels were detected immunohistochemically. LBH589 induced a DAPK-dependent autophagy as assessed by punctuate accumulation of LC3-II, the formation of acidic vesicular organelles, and degradation of p62 protein. LBH589-induced autophagy seems to be predominantly caused by DAPK protein interactions than by its kinase activity. Caspase inhibitor zVAD increased autophagosome formation, decreased the cleavage of caspase 3 and PARP but didn’t rescue the cells from LBH589-induced cell death in crystal violet staining suggesting both caspase-dependent as well as caspase-independent apoptosis pathways. Pre-treatment with the autophagy inhibitor Bafilomycin A1 caused caspase 3-mediated apoptosis in a DAPK-dependent manner. Altogether our data suggest that DAPK induces autophagy in response to HDACi-treatment. In autophagy deficient cells, DAPK plays an essential role in committing cells to HDACi-induced apoptosis.  相似文献   

14.
Death-associated protein kinase (DAPK) is a death domain-containing serine/threonine kinase, and participates in various apoptotic paradigms. Here, we identify the extracellular signal-regulated kinase (ERK) as a DAPK-interacting protein. DAPK interacts with ERK through a docking sequence within its death domain and is a substrate of ERK. Phosphorylation of DAPK at Ser 735 by ERK increases the catalytic activity of DAPK both in vitro and in vivo. Conversely, DAPK promotes the cytoplasmic retention of ERK, thereby inhibiting ERK signaling in the nucleus. This reciprocal regulation between DAPK and ERK constitutes a positive feedback loop that ultimately promotes the apoptotic activity of DAPK. In a physiological apoptosis system where ERK-DAPK interplay is reinforced, downregulation of either ERK or DAPK suppresses such apoptosis. These results indicate that bidirectional signalings between DAPK and ERK may contribute to the apoptosis-promoting function of the death domain of DAPK.  相似文献   

15.
Death-associated protein kinase (DAPK) has been implicated in apoptosis and tumor suppression, depending on cellular conditions, and associated with mechanisms of disease. However, DAPK has not been characterized as an enzyme due to the lack of protein or peptide substrates. Therefore, we determined the structure of DAPK catalytic domain, used a homology model of docked peptide substrate, and synthesized positional scanning substrate libraries in order to discover peptide substrates with K(m) values in the desired 10 microm range and to obtain knowledge about the preferences of DAPK for phosphorylation site sequences. Mutagenesis of DAPK catalytic domain at amino acids conserved among protein kinases or unique to DAPK provided a link between structure and activity. An enzyme assay for DAPK was developed and used to measure activity in adult brain and monitor protein purification based on the physical and chemical properties of the open reading frame of the DAPK cDNA. The results allow insight into substrate preferences and regulation of DAPK, provide a foundation for proteomic investigations and inhibitor discovery, and demonstrate the utility of the experimental approach, which can be extended potentially to kinase open reading frames identified by genome sequencing projects or functional genetics screens and lacking a known substrate.  相似文献   

16.
The death-associated protein kinase (DAPK) family has been characterized as a group of pro-apoptotic serine/threonine kinases that share specific structural features in their catalytic kinase domain. Two of the DAPK family members, DAPK1 and DAPK2, are calmodulin-dependent protein kinases that are regulated by oligomerization, calmodulin binding, and autophosphorylation. In this study, we have determined the crystal and solution structures of murine DAPK2 in the presence of the autoinhibitory domain, with and without bound nucleotides in the active site. The crystal structure shows dimers of DAPK2 in a conformation that is not permissible for protein substrate binding. Two different conformations were seen in the active site upon the introduction of nucleotide ligands. The monomeric and dimeric forms of DAPK2 were further analyzed for solution structure, and the results indicate that the dimers of DAPK2 are indeed formed through the association of two apposed catalytic domains, as seen in the crystal structure. The structures can be further used to build a model for DAPK2 autophosphorylation and to compare with closely related kinases, of which especially DAPK1 is an actively studied drug target. Our structures also provide a model for both homodimerization and heterodimerization of the catalytic domain between members of the DAPK family. The fingerprint of the DAPK family, the basic loop, plays a central role in the dimerization of the kinase domain.  相似文献   

17.
The repulsive guidance molecule (RGM) is a membrane-bound protein that has diverse functions in the developing central nervous system. Identification of neogenin as a receptor for RGM provided evidence of its cell death-inducing activity in the absence of RGM. Here, we show that the serine/threonine kinase death-associated protein kinase (DAPK) is involved in the signal transduction of neogenin. Neogenin interacts with DAPK and reduces DAPK autophosphorylation on Ser308 in vitro. Neogenin-induced cell death is abolished in the presence of RGM or by blocking DAPK. Although neogenin overexpression or RGM downregulation in the chick neural tube in vivo induces apoptosis, coexpression of the dominant-negative mutant or small-interference RNA of DAPK attenuates this proapoptotic activity. Thus, RGM/neogenin regulates cell fate by controlling the DAPK activity.  相似文献   

18.
19.
DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK’s activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.  相似文献   

20.
Death associated protein kinase (DAPK) is a large, multi-domain ser/thr kinase whose activities converge upon multiple signaling pathways that regulate autophagy, caspase-dependent cell death, cell adhesion and migration. The cellular levels of DAPK are post-translationally regulated by the combined activities of two degradation systems, including the ubiquitin proteasome and an extra-lysosomal proteolysis pathway. At least three distinct E3 ubiquitin ligases target DAPK, including mindbomb1, the chaperone dependent ligase, CHIP (carboxy terminus of Hsp70-interacting protein) and a cullin RING ligase complex, KLHL20-Cul3-RBX1. In addition, it appears that the cellular levels of DAPK are also regulated by an extra-lysosomal protease, cathepsin B. While protein quality control and recycling clearly benefit cells by removal of misfolded or toxic proteins and recycling of their components, the finding that multiple surveillance systems target DAPK suggests that these protein degradation systems also act to fine tune DAPK expression levels in response to specific signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号