首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell migration and survival are coordinately regulated through activation of c-Abl (Abl) family tyrosine kinases. Activated Abl phosphorylates tyrosine 221 of c-CrkII (Crk; Crk-Y221-P), which prevents Crk from binding to the docking protein p130(CAS) (CAS). Disruption of CAS-Crk binding blocks downstream effectors of the actin cytoskeleton and focal adhesion assembly, inhibits cell migration, and disrupts survival signals leading to apoptosis. Here we show that inhibition of the 26 S proteasome and ubiquitination facilitates Abl-mediated Crk-Y221-P, leading to disassembly of CAS-Crk complexes in cells. Surprisingly, inhibition of these molecular interactions does not perturb cell migration but rather specifically induces apoptosis. Furthermore, we demonstrate that attachment to an extracellular matrix plays a key role in regulating the apoptotic machinery through caspase-mediated cleavage of Abl and Crk-Y221-P. Our findings indicate that regulated protein degradation by the proteasome specifically controls cell death through regulation of Abl-mediated Crk Tyr221 phosphorylation and assembly of the CAS-Crk signaling scaffold.  相似文献   

2.
3.
4.
The SM protein UNC-18 has been proposed to regulate several aspects of secretion, including synaptic vesicle docking, priming, and fusion. Here, we show that UNC-18 has a chaperone function in neurons, promoting anterograde transport of the plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein Syntaxin-1. In unc-18 mutants, UNC-64 (Caenorhabditis elegans Syntaxin-1) accumulates in neuronal cell bodies. Colocalization studies and analysis of carbohydrate modifications both suggest that this accumulation occurs in the endoplasmic reticulum. This trafficking defect is specific for UNC-64 Syntaxin-1, because 14 other SNARE proteins and two active zone markers were unaffected. UNC-18 binds to Syntaxin through at least two mechanisms: binding to closed Syntaxin, or to the N terminus of Syntaxin. It is unclear which of these binding modes mediates UNC-18 function in neurons. The chaperone function of UNC-18 was eliminated in double mutants predicted to disrupt both modes of Syntaxin binding, but it was unaffected in single mutants. By contrast, mutations predicted to disrupt UNC-18 binding to the N terminus of Syntaxin caused significant defects in locomotion behavior and responsiveness to cholinesterase inhibitors. Collectively, these results demonstrate the UNC-18 acts as a molecular chaperone for Syntaxin transport in neurons and that the two modes of UNC-18 binding to Syntaxin are involved in different aspects of UNC-18 function.  相似文献   

5.
Death-associated protein kinase 2 (DAPK2) is a Ca2+/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein''s subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.  相似文献   

6.
The LIM domain-containing TRIP6 (Thyroid Hormone Receptor-interacting Protein 6) is a focal adhesion molecule known to regulate lysophosphatidic acid (LPA)-induced cell migration through interaction with the LPA2 receptor. LPA stimulation targets TRIP6 to the focal adhesion complexes and promotes c-Src-dependent phosphorylation of TRIP6 at Tyr-55, which creates a docking site for the Crk Src homology 2 domain, thereby promoting LPA-induced morphological changes and cell migration. Here we further demonstrate that a switch from c-Src-mediated phosphorylation to PTPL1/Fas-associated phosphatase-1-dependent dephosphorylation serves as an inhibitory feedback control mechanism of TRIP6 function in LPA-induced cell migration. PTPL1 dephosphorylates phosphotyrosine 55 of TRIP6 in vitro and inhibits LPA-induced tyrosine phosphorylation of TRIP6 in cells. This negative regulation requires a direct protein-protein interaction between these two molecules and the phosphatase activity of PTPL1. In contrast to c-Src, PTPL1 prevents TRIP6 turnover at the sites of adhesions. As a result, LPA-induced association of TRIP6 with Crk and the function of TRIP6 to promote LPA-induced morphological changes and cell migration are inhibited by PTPL1. Together, these results reveal a novel mechanism by which PTPL1 phosphatase plays a counteracting role in regulating TRIP6 function in LPA-induced cell migration.  相似文献   

7.
8.
Tumor cell migration is a crucial step in the metastatic cascade, and interruption of this step is considered to be logically effective in preventing tumor metastasis. Lipid rafts, distinct liquid ordered plasma membrane microdomains, have been shown to influence cancer cell migration, but the underlying mechanisms are still not well understood. Here, we report that lipid rafts regulate the dynamics of actin cytoskeleton and focal adhesion in human melanoma cell migration. Disrupting the integrity of lipid rafts with methyl-β cyclodextrin enhances actin stress fiber formation and inhibits focal adhesion disassembly, accompanied with alterations in cell morphology. Furthermore, actin cytoskeleton, rather than microtubules, mediates the lipid raft-dependent focal adhesion disassembly by regulating the dephosphorylation of focal adhesion proteins and the internalization of β3 integrin. We also show that Src–RhoA–Rho kinase signaling pathway is responsible for lipid raft disruption-induced stress fiber formation. Taken together, these observations provide a new mechanism to further explain how lipid rafts regulate the migration of melanoma cell and suggest that lipid rafts may be novel and attractive targets for cancer therapy.  相似文献   

9.
Focal adhesion regulation of cell behavior   总被引:23,自引:0,他引:23  
Focal adhesions lie at the convergence of integrin adhesion, signaling and the actin cytoskeleton. Cells modify focal adhesions in response to changes in the molecular composition, two-dimensional (2D) vs. three-dimensional (3D) structure, and physical forces present in their extracellular matrix environment. We consider here how cells use focal adhesions to regulate signaling complexes and integrin function. Furthermore, we examine how this regulation controls complex cellular behaviors in response to matrices of diverse physical and biochemical properties. One event regulated by the physical structure of the ECM is phosphorylation of focal adhesion kinase (FAK) at Y397, which couples FAK to several signaling pathways that regulate cell proliferation, survival, migration, and invasion.  相似文献   

10.
J. Neurochem. (2012) 122, 1081-1091. ABSTRACT: Dual-specificity tyrosine(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is a protein kinase that might be responsible for mental retardation and early onset of Alzheimer's disease in Down's syndrome patients. Dyrk1A plays a role in many cellular pathways through phosphorylation of diverse substrate proteins; however, its role in synaptic vesicle exocytosis is poorly understood. Munc18-1, a central regulator of neurotransmitter release, interacts with Syntaxin 1 and X11α. Syntaxin 1 is a key soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein involved in synaptic vesicle docking/fusion events, and X11α modulates amyloid precursor protein processing and β amyloid generation. In this study, we demonstrate that Dyrk1A interacts with and phosphorylates Munc18-1 at the Thr(479) residue. The phosphorylation of Munc18-1 at Thr(479) by Dyrk1A stimulated binding of Munc18-1 to Syntaxin 1 and X11α. Furthermore, the levels of phospho-Thr(479) -Munc18-1 were enhanced in the brains of transgenic mice over-expressing Dyrk1A protein, providing in vivo evidence of Munc18-1 phosphorylation by Dyrk1A. These results reveal a link between Munc18-1 and Dyrk1A in synaptic vesicle trafficking and amyloid precursor protein processing, suggesting that up-regulated Dyrk1A in Down's syndrome and Alzheimer's disease brains may contribute to some pathological features, including synaptic dysfunction and cognitive defect through abnormal phosphorylation of Munc18-1.  相似文献   

11.
Integrin binding to matrix proteins such as fibronectin (FN) leads to formation of focal adhesion (FA) cellular contact sites that regulate migration. RhoA GTPases facilitate FA formation, yet FA-associated RhoA-specific guanine nucleotide exchange factors (GEFs) remain unknown. Here, we show that proline-rich kinase-2 (Pyk2) levels increase upon loss of focal adhesion kinase (FAK) in mouse embryonic fibroblasts (MEFs). Additionally, we demonstrate that Pyk2 facilitates deregulated RhoA activation, elevated FA formation, and enhanced cell proliferation by promoting p190RhoGEF expression. In normal MEFs, p190RhoGEF knockdown inhibits FN-associated RhoA activation, FA formation, and cell migration. Knockdown of p190RhoGEF-related GEFH1 does not affect FA formation in FAK−/− or normal MEFs. p190RhoGEF overexpression enhances RhoA activation and FA formation in MEFs dependent on FAK binding and associated with p190RhoGEF FA recruitment and tyrosine phosphorylation. These studies elucidate a compensatory function for Pyk2 upon FAK loss and identify the FAK–p190RhoGEF complex as an important integrin-proximal regulator of FA formation during FN-stimulated cell motility.  相似文献   

12.
《Autophagy》2013,9(4):531-533
DAPK represents a relatively unique enzyme in the protein kinase superfamily whose major biological functions are linked to both autophagy and signal-mediated apoptosis. However, genetic studies have not yet uncovered how DAPK integrates into the core autophagy-related (Atg) machinery since DAPK is not present in a genetically tractable eukaryotic cell such as yeast. Furthermore, there have been no definitive DAPK binding proteins identified in metazoan systems that play a direct role in cooperating with DAPK in autophagy. We have utilized a growing concept in systems biology that invokes linear peptide-motifs as a fundamental mechanism driving protein-protein interactions and as a key switch underlying the dynamics of a signal transduction pathway. By using peptide combinatorial libraries as an assay that reflects the diversity of the linear peptide motif repertoire in the mammalian proteome, we identified microtubule-associated protein 1B (MAP1B) as a novel DAPK interacting protein that stimulates DAPK-dependent membrane blebbing and autophagy. MAP1B has previously been shown to form a functional interaction with the autophagosomal protein Atg8 (LC3). Together these studies define a genetic interaction between DAPK-MAP1B in the regulation of autophagy that may have particular relevance to cellular signalling pathways that regulate cell survival or cell death under distinct environmental stresses.

Addendum to: Harrison B, Kraus M, Burch L, Stevens C, Craig A, Gordon-Weeks P, Hupp T. DAPK-1 binding to a linear interaction motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 2008; In press.  相似文献   

13.
Cdc42 effector protein-4 (CEP4) was recently identified by our laboratory to be a substrate of multiple PKC isoforms in non-transformed MCF-10A human breast cells. The significance of phosphorylated CEP4 to PKC-stimulated motility of MCF-10A cells was evaluated. Single site mutants at Ser residues embedded in potential PKC consensus sites (Ser18, Ser77, Ser80, and Ser86) were individually replaced with Asp residues to simulate phosphorylation. Following expression in weakly motile MCF-10A cells, the S18D and S80D mutants each promoted increased motility, and the double mutant (S18D/S80D) produced a stronger effect. MS/MS analysis verified that Ser18 and Ser80 were directly phosphorylated by PKCα in vitro. Phosphorylation of CEP4 severely diminished its affinity for Cdc42 while promoting Rac activation and formation of filopodia (microspikes). In contrast, the phosphorylation-resistant double mutant S18A/S80A-CEP4 blocked CEP4 phosphorylation and inhibited motility of MCF-10A cells that had been stimulated with PKC activator diacylglycerol lactone. In view of the dissociation of phospho-CEP4 from Cdc42, intracellular binding partners were explored by expressing each CEP4 double mutant from a tandem affinity purification vector followed by affinity chromatography, SDS-PAGE, and identification of protein bands evident only with S18D/S80D-CEP4. One binding partner was identified as tumor endothelial marker-4 (TEM4; ARHGEF17), a guanine nucleotide exchange factor that is involved in migration. In motile cells expressing S18D/S80D-CEP4, knockdown of TEM4 inhibited both Rac activation and motility. These findings support a model in which PKC-mediated phosphorylation of CEP4 at Ser18 and Ser80 causes its dissociation from Cdc42, thereby increasing its affinity for TEM4 and producing Rac activation, filopodium formation, and cell motility.  相似文献   

14.
As previously shown, constitutive activation of the small GTPase Rho and its downstream target Rho-kinase is crucial for spontaneous migration of Walker carcinosarcoma cells. We now show that after treatment of cells with either the Rho inhibitor C3 exoenzyme or the Rho-kinase inhibitor Y-27632, constitutive myosin light chain (MLC) phosphorylation is significantly decreased, correlating with inhibition of cell polarization and migration. Transfection with a dominant-negative Rho-kinase mutant similarly inhibits cell polarization and MLC phosphorylation. Transfection with a dominant-active Rho-kinase mutant leads to significantly increased MLC phosphorylation, membrane blebbing, and inhibition of cell polarization. This Rho-kinase-induced membrane blebbing can be inhibited by Y-27632, ML-7, and blebbistatin. Unexpectedly, overactivation of RhoA has similar effects as its inhibition. Introduction of a bacterially expressed constitutively activated mutant protein (but not of wild-type RhoA) into the cells or transfection of cells with a constitutively active RhoA mutant both inhibit polarization and decrease MLC phosphorylation. Transfection of cells with constitutively active or dominant-negative Rac both abrogate polarity, and the latter inhibits MLC phosphorylation. Our findings suggest an important role of Rac, Rho/Rho-kinase, and MLCK in controlling myosin activity in Walker carcinosarcoma cells and show that an appropriate level of RhoA, Rac, and Rho-kinase activity is required to regulate cell polarity and migration.  相似文献   

15.
The matricellular glycoprotein Secreted Protein Acidic and Rich in Cysteine (SPARC) plays an important role in the regulation of cell adhesion and proliferation as well as in tumorigenesis and metastasis. Earlier, we reported that, in addition to its potent anti-angiogenic functions, SPARC also induces apoptosis in medulloblastoma cells, mediated by autophagy. We therefore sought to investigate the underlying molecular mechanism through which SPARC inhibits migration and invasion of Daoy medulloblastoma cells, both in vitro and in vivo. For this study, we used SPARC-overexpressing stable Daoy medulloblastoma cells. SPARC overexpression in Daoy medulloblastoma cells inhibited migration and invasion in vitro. Additionally, SPARC overexpression significantly suppressed the activity of Rho, Rac and Cdc42, which all regulate the actin cytoskeleton. This suppression was accompanied by an increase in the phosphorylation of Src at Tyr-416, which led to a loss of actin stress fibers and focal contacts and a decrease in the phosphorylation level of cofilin. The reduced phosphorylation level of cofilin, which is indicative of receding Rho function, in turn led to inhibition of active Rho A. To confirm the role of SPARC in inhibition of migration and invasion of Daoy medulloblastoma cells, we transfected parental and SPARC-overexpressing Daoy cells with a plasmid vector carrying siRNA against SPARC. Transfection with SPARC siRNA reversed Src-mediated disruption of the cytoskeleton organization as well as dephosphorylation of cofilin and activation of Rho A. Taken together, these results establish SPARC as an effector of Src-induced cytoskeleton disruption in Daoy medulloblastoma cells, which subsequently led to decreased migration and invasion.  相似文献   

16.
ARHI is an imprinted tumor suppressor gene that is downregulated in > 60% of ovarian cancers, associated with decreased progression-free survival. ARHI encodes a 26 kDa GTPase with homology to Ras. Re-expression of ARHI inhibits ovarian cancer growth, initiates autophagy and induces tumor dormancy. Recent studies have demonstrated that ARHI also plays a particularly important role in ovarian cancer cell migration. Re-expression of ARHI decreases motility of IL-6- and EGF-stimulated SKOv3 and Hey ovarian cancer cells, inhibiting both chemotaxis and haptotaxis. ARHI inhibits cell migration by binding and sequestering STAT3 in the cytoplasm, and preventing STAT3 translocation to the nucleus and localization in focal adhesion complexes. Re-expression of ARHI inhibits FAKY397 phosphorylation, disrupts focal adhesions and blocks FAK-mediated RhoA signaling, resulting in decreased levels of GTP-RhoA. Re-expression of ARHI disrupts formation of actin stress fibers in a FAK- and RhoA-dependent manner. Recent studies indicate that re-expression of ARHI inhibits expression of β-1 integrin which may also contribute to inhibition of migration, adhesion and invasion.  相似文献   

17.
间充质干细胞(mesenchymalstemcells,MSCs)具有多向分化潜能并能在体外趋化剂或细胞因子的作用下进行定向迁移,体内移植后可趋向迁移至脑瘤病灶区。细胞黏附是细胞迁移的首要条件,了解细胞黏附及其调控有助于细胞迁移机制的研究。细胞黏附及铺展涉及到黏着斑(f0-caladhesions,FAs)的动态变化以及细胞骨架的重排。细胞铺展面积在黏附过程中逐渐增大,黏附初期形成的小的黏着复合物逐渐成熟,聚集在一起形成较大的FAs。肌动蛋白(F—actin)聚集形成的螺线圈样微丝结构逐渐被应力纤维代替,细胞也由圆形变为具有极性的梭形或多角形。黏着斑激酶(focal adhesion kinase,FAK)和桩蛋白(paxillin)具有调节FAs聚合及骨架重排的作用,其中,Y397-FAK和Y31/Y118-paxillin的磷酸化活性在细胞铺展过程中不断变化。FAs组装时,Y397-FAK的磷酸化活性升高;FAs成熟后,Y397.FAK的磷酸化活性下降。活化的FAK能够磷酸4LY31/Y118-paxillin,激活paxillin参与调节细胞骨架的形成和排列。血管内皮生长因子(vascular endothelial growthfactor,VEGF)诱导~SMSCs黏附过程中,细胞面积变大,完全铺展的时间缩短,黏着斑及细胞骨架的形成均提前。另外,VEGF诱导的细胞铺展过程中形成的FAs形态细长,数量较多。该研究表明,VEGF通过调节黏着斑和细胞骨架促L~MSCs的黏附与铺展,提示vEGF可以通过调节黏着斑进而调控MSCs的定向迁移,为细胞迁移行为的研究提供理论基础。  相似文献   

18.
近年来,对突触小泡释放神经递质分子机制的研究迅速发展,发现了大量位于神经末梢的蛋白质.它们之间的相互作用与突触小泡释放神经递质相关,特别是位于突触小泡膜上的突触小泡蛋白/突触小泡相关膜蛋白(synaptobrevin/VAMP),位于突触前膜上的syntaxin和突触小体相关蛋白(synaptosome-associated protein of 25 ku),三者聚合形成的可溶性NSF附着蛋白受体(SNARE)核心复合体在突触小泡的胞裂外排、释放递质过程中有重要作用.而一些已知及未知的与SNARE蛋白有相互作用的蛋白质,可通过调节SNARE核心复合体的形成与解离来影响突触小泡的胞裂外排,从而可以调节突触信号传递的效率及强度,在突触可塑性的形成中起重要作用.  相似文献   

19.
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase, SHP-2, plays an important role in cell migration by interacting with various proteins. In this report, we demonstrated that SHP-2 inhibits tyrosine phosphorylation of Crk-associated substrate lymphocyte type (Cas-L), a docking protein which mediates cell migration, and found that SHP-2 negatively regulates migration of A549 lung adenocarcinoma cells induced by fibronectin (FN). We showed that overexpressed SHP-2 co-localizes with Cas-L at focal adhesions and that exogenous expression of SHP-2 abrogates cell migration mediated by Cas-L. SHP-2 inhibits tyrosine phosphorylation of Cas-L, and associates with Cas-L to form a complex in a tyrosine phosphorylation-dependent manner. Finally, immunoprecipitation experiments with deletion mutants revealed that both SH2 domains of SHP-2 are necessary for this association. These results suggest that SHP-2 regulates tyrosine phosphorylation of Cas-L, hence opposing the effect of kinases, and SHP-2 is a negative regulator of cell migration mediated by Cas-L.  相似文献   

20.
The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser779 in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser779 in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser779 was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCϵ can phosphorylate Ser779 in vitro, whereas overexpression of PKCϵ results in constitutive Ser779 phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCϵ reduces both growth factor-induced Ser779 phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser779, can quantitatively control Ras/MAPK signaling to promote specific cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号