首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the Nonomuraea flexuosa Xyn11A polypeptides devoid of the carbohydrate binding module (CBM) have better thermostability than the full-length xylanase and are effective in bleaching of pulp. To produce an enzyme preparation useful for industrial applications requiring high temperature, the region encoding the CBM was deleted from the N. flexuosa xyn11A gene and the truncated gene was expressed in Trichoderma reesei. The xylanase sequence was fused to the T. reesei mannanase I (Man5A) signal sequence or 3′ to a T. reesei carrier polypeptide, either the Man5A core/hinge or the cellulose binding domain (CBD) of cellobiohydrolase II (Cel6A, CBHII). The gene and fusion genes were expressed using the cellobiohydrolase 1 (cel7A, cbh1) promoter. Single-copy isogenic transformants in which the expression cassette replaced the cel7A gene were cultivated and analyzed. The transformants expressing the truncated N. flexuosa xyn11A produced clearly increased amounts of both the xylanase/fusion mRNA and xylanase activity compared to the corresponding strains expressing the full-length N. flexuosa xyn11A. The transformant expressing the cel6A CBD-truncated N. flexuosa xyn11A produced about 1.9 g liter−1 of the xylanase in laboratory-scale fermentations. The xylanase constituted about 25% of the secreted proteins. The production of the truncated xylanase did not induce the unfolded protein response (UPR) pathway. However, the UPR was induced when the full-length N. flexuosa xyn11A with an exact fusion to the cel7A terminator was expressed. We suggest that the T. reesei folding/secretion machinery is not able to cope properly with the bacterial CBM when the mRNA of the full-length N. flexuosa xyn11A is efficiently translated.  相似文献   

2.
We have previously shown that the Nonomuraea flexuosa Xyn11A polypeptides devoid of the carbohydrate binding module (CBM) have better thermostability than the full-length xylanase and are effective in bleaching of pulp. To produce an enzyme preparation useful for industrial applications requiring high temperature, the region encoding the CBM was deleted from the N. flexuosa xyn11A gene and the truncated gene was expressed in Trichoderma reesei. The xylanase sequence was fused to the T. reesei mannanase I (Man5A) signal sequence or 3' to a T. reesei carrier polypeptide, either the Man5A core/hinge or the cellulose binding domain (CBD) of cellobiohydrolase II (Cel6A, CBHII). The gene and fusion genes were expressed using the cellobiohydrolase 1 (cel7A, cbh1) promoter. Single-copy isogenic transformants in which the expression cassette replaced the cel7A gene were cultivated and analyzed. The transformants expressing the truncated N. flexuosa xyn11A produced clearly increased amounts of both the xylanase/fusion mRNA and xylanase activity compared to the corresponding strains expressing the full-length N. flexuosa xyn11A. The transformant expressing the cel6A CBD-truncated N. flexuosa xyn11A produced about 1.9 g liter-1 of the xylanase in laboratory-scale fermentations. The xylanase constituted about 25% of the secreted proteins. The production of the truncated xylanase did not induce the unfolded protein response (UPR) pathway. However, the UPR was induced when the full-length N. flexuosa xyn11A with an exact fusion to the cel7A terminator was expressed. We suggest that the T. reesei folding/secretion machinery is not able to cope properly with the bacterial CBM when the mRNA of the full-length N. flexuosa xyn11A is efficiently translated.  相似文献   

3.
The gene man5K encoding the mannanase Man5K from Clostridium cellulolyticum was cloned alone or as an operon with the gene cipC1 encoding a truncated scaffoldin (miniCipC1) of the same origin in the solventogenic Clostridium acetobutylicum. The expression of the heterologous gene(s) was under the control of a weakened thiolase promoter Pthl. The recombinant strains of the solventogenic bacterium were both found to secrete active Man5K in the range of milligrams per liter. In the case of the strain expressing only man5K, a large fraction of the recombinant enzyme was truncated and lost the N-terminal dockerin domain, but it remained active towards galactomannan. When man5K was coexpressed with cipC1 in C. acetobutylicum, the recombinant strain secreted almost exclusively full-length mannanase, which bound to the scaffoldin miniCipC1, thus showing that complexation to the scaffoldin stabilized the enzyme. The secreted heterologous complex was found to be functional: it binds to crystalline cellulose via the carbohydrate binding module of the miniscaffoldin, and the complexed mannanase is active towards galactomannan. Taken together, these data show that C. acetobutylicum is a suitable host for the production, assembly, and secretion of heterologous minicellulosomes.  相似文献   

4.
Trichoderma harzianum is a soil-borne filamentous fungus that exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. In this study the SOD gene was successfully transferred into the bio-control fungus Trichoderma harzianum with an efficiency of 60–110 transformants per 107 spores by using Agrobacterium tumefaciens-mediated transformation. Putative transformants were analyzed to test the transformation by the southern blot. Antifungal activities of the transformants were examined under abiotic stresses. The transformants were exposed to 40°C for three days and 2 mol/l NaCl at 27°C for 5–10 days to assay antifungal activities with Sclerotinia sclerotiorum. The inhibition rates of the transformants, comparing to Trichoderma harzianum with no SOD gene transferred, were respectively 83.96% after 40°C and 60.13% after 2 mol/l NaCl. The results showed that the SOD transformants had significantly higher resistance to heat and salt stress.  相似文献   

5.
The gene man5XZ3 from Aspergillus nidulans XZ3 encodes a multimodular β-mannanase of glycoside hydrolase family 5 that consists of a family 1 carbohydrate-binding module (CBM1), a Thr/Ser-rich linker region, and a catalytic domain. Recombinant Man5XZ3 and its two truncated derivatives, Man5ΔCBM (removing the CBM1) and Man5ΔCL (removing both the CBM1 and linker region), were produced in Pichia pastoris and showed significant variance in the secondary structure. The three enzymes had similar biochemical properties, such as optimal pH and temperature (pH 5.0 and 80 °C) and excellent pH stability at pH 4.0–10.0. Removal of the CBM1 alone could improve the thermostability of Man5XZ3, but further removal of the linker region resulted in worse thermostability. Man5XZ3 retained greater enzyme activity in the presence of an organic solvent (acetone), two detergents (SDS and Triton X-100), and a chaotropic agent (urea) compared with Man5ΔCBM and Man5ΔCL. This study provides an excellent β-mannanase candidate favorable for various industries and primarily demonstrates the relationship between enzyme structure and function.  相似文献   

6.
Xylanase III (Xyn III), a specific endoxylanase that belongs to family 10 of the glycoside hydrolases, was overexpressed in Trichoderma reesei QM9414 using a constitutive strong promoter of the gene encoding pyruvate decarboxylase (pdc). The maximum recombinant xylanase activity achieved was 817.2?±?65.2 U/mL in the transformant fermentation liquid. The productivities of Xyn III accounted for approximately 53 % of the total protein secreted by the recombinant. The enzyme was optimally active at 60 °C and pH 6. The recombinant Xyn III was stable at pH 5–8. This is the first report on the homologous expression of xyn3 in T. reesei QM9414. The properties of Xyn III make it promising in a variety of industrial use.  相似文献   

7.
Two endoxylanases, Nf Xyn11A and Nf Xyn10A, were cloned from a Nonomuraea flexuosa (previously Actinomadura flexuosa) DSM43186 genomic expression library in Escherichia coli. The coding sequences of xyn11A and xyn10A consist of 344 and 492 amino acids, respectively. The catalytic domains belong to family 11 and family 10 of glycoside hydrolases. The C-termini share strong amino acid sequence similarity to carbohydrate-binding module (CBM) families CBM2 and CBM13, respectively. Native Nf Xyn11A, and recombinant Xyn11A expressed in the filamentous fungus Trichoderma reesei, were purified from cultivation media and characterized. The molecular masses of the full-length enzymes determined by mass spectrometry were 32.9 kDa and 33.4 kDa, the recombinant enzyme having higher molecular mass due to glycosylation. In addition, shorter polypeptides with molecular masses of 23.8 kDa and 22.0 kDa were characterized from the T. reesei culture medium, both lacking the C-terminal CBM and the 22.0 kDa polypeptide also lacking most of the linker region. The recombinant polypeptides were similar to each other in terms of specific activity, pH and temperature dependence. However, the 23.8 kDa and 22.0 kDa polypeptides were more thermostable at 80°C than the full-length enzyme. All polypeptide forms were effective in pretreatment of softwood kraft pulp at 80°C.  相似文献   

8.
Trichoderma asperellum parasitizes a large variety of phytopathogenic fungi. The mycoparasitic activity of T. asperellum depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall and proteases which are a group of enzymes capable of degrading proteins from host. In this study, a full-length cDNA clone of aspartic protease gene, TaAsp, from T. asperellum was obtained and sequenced. The 1,185 bp long cDNA sequence was predicted to encode a 395 amino acid polypeptide with molecular mass of 42.3 kDa. The cDNA of TaAsp was inserted into the pPIC9K vector and transformed into yeast Pichia pastoris GS115 for heterologous expression. A clearly visible band with molecular mass about 42 kDa in the SDS-PAGE gel indicated that the transformant harboring the gene TaAsp had been successfully translated in P. pastoris and produced a recombinant protein. Enzyme characterization test showed that the optimum fermentation time for P. pastoris GS115 transformant was 72 h. Enzyme activity of the recombinant aspartic proteinase remained relatively stable at 25–60 °C and pH 3.0–9.0, which indicated its good prospect of application in biocontrol. The optimal pH value and temperature of the enzyme activity were pH 4.0 and 40 °C, and under this condition, with casein as the substrate, the recombinant protease activity was 18.5 U mL?1. In order to evaluate antagonistic activity of the recombinant protease against pathogenic fungi, five pathogenic fungi, Fusarium oxysporum, Alternaria alternata, Cytospora chrysosperma, Sclerotinia sclerotiorum and Rhizoctonia solani, were applied to the test of in vitro inhibition of their mycelial growth by culture supernatant of P. pastoris GS115 transformant.  相似文献   

9.
Paenibacillus polymyxa GS01 secretes Cel44C-Man26A as a multifunctional enzyme with cellulase, xylanase, lichenase, and mannanase activities. Cel44C-Man26A consists of 1,352 amino acids in which present a catalytic domain (CD) of the glycosyl hydrolase family 44 (GH44), fibronectin domain type 3 (Fn3), catalytic domain of glycosyl hydrolase family 26 (GH26), and a cellulose-binding module type 3 (CBM3). A truncated Cel44C-Man26A protein, consisting of 549 amino acid residues, reacted as a multifunctional mature enzyme despite the absence of the 10 amino acids containing GH44, Fn3, GH26, and CBM3. However, the multifunctional activity was not found in the mature Cel44C-Man26A protein truncated to less than 548 amino acids. The truncated Cel44C-Man26A proteins showed the optimum pH for the lichenase activity was pH 7.0, pH 6.0 for the xylanase and mannanase, and pH 5.0 for the cellulase. The truncated Cel44C-Man26A proteins exhibited enzymatic activity 40–120% higher than the full-length Cel44C.  相似文献   

10.
Trichoderma reesei is the preferred organism for producing industrial cellulases. However, cellulases derived from T. reesei have their highest activity at acidic pH. When the pH value increased above 7, the enzyme activities almost disappeared, thereby limiting the application of fungal cellulases under neutral or alkaline conditions. A lot of heterologous alkaline cellulases have been successfully expressed in T. reesei to improve its cellulolytic profile. To our knowledge, there are few reports describing the co-expression of two or more heterologous cellulases in T. reesei. We designed and constructed a promoter collection for gene expression and co-expression in T. reesei. Taking alkaline cellulase as a reporter gene, we assessed our promoters with strengths ranging from 4 to 106 % as compared to the pWEF31 expression vector (Lv D, Wang W, Wei D (2012) Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67(1):67–71). The promoter collection was used in a proof-of-principle approach to achieve the co-expression of an alkaline endoglucanase and an alkaline cellobiohydrolase. We observed higher activities of both cellulose degradation and biostoning by the co-expression of an endoglucanase and a cellobiohydrolase than the activities obtained by the expression of only endoglucanase or cellobiohydrolase. This study makes the process of engineering expression of multiple genes easier in T. reesei.  相似文献   

11.
The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.  相似文献   

12.
To improve the extracellular production of alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli, two truncated recombinant mannanases (32a-ManAR2 and 22b-ManAR2) were obtained. Compared with the full-length mannanases (32a-ManAR1 and 22b-ManAR1), the truncated mannanases not only showed higher secretion rate, but also exhibited higher thermostability and alkalistability. The K m value (11 mg/mL) of 32a-ManAR2 was higher than that (1.46 mg/mL) of 32a-ManAR1. The specific activity of 22b-ManAR2 was 2.7 times higher than that of 22b-ManAR1. 22b-ManAR2 showed the highest k cat/K m value of 602.7 ml/mg s. The parameters of induction for recombinant mannanase production of E. coli BL21 (pET32a-manAR2) and E. coli BL21 (pET22b-manAR2) were subsequently optimized. The yield of soluble mannanase was found to be enhanced with lower induction temperature (25 °C), lower IPTG concentration (0.01–0.05 mM), and Triton X-100 supplement (0.1 %) in a shake flask. Moreover, a one-time feeding strategy and Triton X-100 supplement were applied in production of 22b-ManAR2 in a 10 L fermentor. The productivity of the total soluble mannanase reached 9284.64 U/mL with the extracellular rate of 74 % at 46 h of fermentation, which was the highest productive level of alkaline β-mannanase in recombinant E. coli to date.  相似文献   

13.
β-Glucosidases are of pivotal importance in bioconversion of carbonic biomass into fermentable and other useful metabolites, food industry, biotransformation, glyco-trimming of metabolome, etc. Trichoderma citrinoviride when grown on delignified Lantana camara produced a β-glucosidase and secreted it out in the medium. The extracellularly secreted β-glucosidase of T. citrinoviride was homogeneity purified and then characterized for its kinetic properties and proteomic characteristics. The 90 kDa enzyme was monomeric in nature, optimally active at pH 5.5 and the catalytic reaction rate was highest at 55°C. Uniquely, the enzyme was insensitive to inhibition by glucose (up to 5 mM). It also possessed catalytic ability of transglycosylation, as it could catalyze conversion of geraniol into its glucoside. MALDI-TOF assisted proteomic analysis revealed its high degree of sequence similarity with family 3 glycoside hydrolases.  相似文献   

14.
CsMan26 from Caldicellulosiruptor strain Rt8.B4 is a modular β-mannanase consisting of two N-terminal family 27 carbohydrate-binding modules (CBMs), followed by a family 35 CBM and a family 26 glycoside hydrolase catalytic module (mannanase). A functional dissection of the full-length CsMan26 and a comprehensive characterisation of the truncated derivatives were undertaken to evaluate the role of the CBMs. Limited proteolysis was used to define biochemically the boundaries of the different structural modules in CsMan26. The full-length CsMan26 and three truncated derivatives were produced in Escherichia coli, purified and characterised. The systematic removal of the CBMs resulted in a decrease in the optimal temperature for activity and in the overall thermostability of the derivatives. Kinetic experiments indicated that the presence of the mannan-specific family 27 CBMs increased the affinity of the enzyme towards the soluble galactomannan substrate but this was accompanied by lower catalytic efficiency. The full-length CsMan26 and its truncated derivatives were unable to hydrolyse mannooligosaccharides with degree of polymerisation (DP) of three or less. The major difference in the hydrolysis pattern of larger mannooligosaccharides (DP >3) by the derivatives was determined by their abilities to further hydrolyse the intermediate sugar mannotetraose.  相似文献   

15.
The neutral endo-β-glucanase gene cel5A from Humicola insolens was cloned and connected with the cellobiohydrolase 1 promoter from Trichoderma reesei to construct a recombinant plasmid pCB-hEG with the hygromycin B resistance marker. The plasmid was introduced into conidia of T. reesei using the Agrobacterium tumefaciens mediated transformation method. Eight transformants were obtained on screening plates with sodium carboxymethyl cellulose as the sole carbon source. Stable integration of the cel5A gene into the chromosomal DNA of T. reesei was confirmed by PCR. An obvious protein band (approximately 52 kDa) was detected by SDS-PAGE from fermentation broth, which showed that the cel5A gene in recombinant T. reesei successfully fulfilled efficient expression and extracellular secretion. After 96 h shaking-flask fermentation, the endo-β-glucanase activity at pH 6.5 from recombinant T. reesei reached 3,068 U/ml, which was 11 times higher than that of the host strain. In a 2 m3 fermenter, the endo-β-glucanase activity could be further increased to 8,012 U/ml after 96 h fermentation. The results showed a good prospect for application of neutral endo-β-glucanase in the textile industry.  相似文献   

16.
Endo-β-1,4-mannanases are important catalytic agents in several industries. The enzymes randomly cleave the β-1,4-linkage in the mannan backbone and release short β-1,4-mannooligosaccharides and mannose. In the present study, mannanase (ManS2) from thermotolerant Bacillus sp. SWU60 was purified, characterized, and its gene was cloned and overexpressed in Escherichia coli. ManS2 was purified from culture filtrate (300 ml) by using hydrophobic, ion-exchange, and size-exclusive liquid chromatography. The apparent molecular mass was 38 kDa. Optimal pH and temperature for enzyme activity were 6.0 and 60?°C, respectively. The enzyme was stable up to 60?°C for 1 h and at pH 5–9 at 4?°C for 16 h. Its enzyme activity was inhibited by Hg2+. The full-length mans2 gene was 1,008 bp, encoding a protein of 336 amino acids. Amino acid sequence analysis revealed that it belonged to glycoside hydrolase family 26. Konjac glucomannan was a favorable substrate for recombinant ManS2 (rManS2). rManS2 also degraded galactomannan from locust bean gum, indicating its potential for production of glucomanno- and galactomanno-oligosaccharides. Both native and recombinant ManS2 from Bacillus sp. SWU60 can be applied in several industries especially food and feed.  相似文献   

17.
在里氏木霉中建立了一个快速的双基因位点同步同源重组新方法,较好解决了里氏木霉基因逐个敲除周期长等问题。研究以里氏木霉自身甘露聚糖酶基因(man5A)为重组表达的报告基因,通过一步转化,将该基因定点整合入纤维二糖水解酶Ⅰ(cbh1)基因位点,同时缺失主要的两个纤维素酶基因(cbh1、cbh2),得到重组工程菌Man12。将重组工程菌Man12与出发菌株Tu6Δku70进行摇瓶发酵,结果显示,重组菌株的甘露聚糖酶产量比出发菌株提高10倍,而纤维素酶产量降低了60%,胞外总蛋白分泌水平降低了40%。Real-time PCR检测甘露聚糖酶基因(man5A)的转录水平,发现重组菌株较出发菌株提高了25倍。在里氏木霉中首次报道了通过一步转化实现两个基因同步定点整合的方法,对利用基因工程手段构建高效表达重组蛋白的里氏木霉工程菌株具有一定的指导意义。  相似文献   

18.
An acid phosphatase from Trichoderma harzianum was purified in a single step using a phenyl-Sepharose chromatography column. A typical procedure showed 22-fold purification with 56% yield. The purified enzyme showed as a single band on SDS-PAGE with an apparent molecular weight of 57.8 kDa. The pH optimum was 4.8 and maximum activity was obtained at 55°C. The enzyme retained 60% of its activity after incubation at 55°C for 60 min. The K m and V max values for p-nitrophenyl phosphate (p-NPP) as a substrate were 165 nM and 237 nM min?1, respectively. The enzyme was partially inhibited by inorganic phosphate and strongly inhibited by tungstate. Broad substrate specificity was observed with significant activities for p-NPP, ATP, ADP, AMP, fructose 6-phosphate, glucose 1-phosphate and phenyl phosphate.  相似文献   

19.
《FEBS letters》2014,588(9):1726-1730
The family-5 glycoside hydrolase domain (GH5) and the family-32 carbohydrate-binding module (CBM32) of Clostridium thermocellum mannanase CtMan5A, along with their genetically inactivated derivatives, were collectively or separately expressed. Their catalytic and substrate-binding abilities were measured to investigate importance of CBM32 in substrate recognition by CtMan5A. Characterization of the truncated derivatives of CtMan5A and isothermal calorimetry analysis of the interaction between the inactivated proteins and mannooligosaccharides suggested that GH5 and CBM32 collectively formed a substrate-binding site capable of accommodating a mannotetraose unit in CtMan5A. This suggested that CBM32 directly participated in the substrate recognition required for catalytic action.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号