首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land use intensity controls actinobacterial community structure   总被引:1,自引:0,他引:1  
Actinobacteria are major producers of secondary metabolites; however, it is unclear how they are distributed in the environment. DNA was extracted from forest, pasture and cultivated soils, street sediments (dust and material in place), and sediments affected by animal activity (e.g. guano, vermicompost) and characterised with two actinobacterial and a bacterial-specific 16S rDNA primer set. Amplicons (140/156) generated with the two actinobacterial-specific and amplicons (471) generated with bacterial-specific primers were analysed. Amplicons from actinobacterial-specific primer were disproportionately actinomycetal from animal-affected (soil) samples and street sediments and either verrucomicrobial (i.e. non-actinobacterial) and from a novel non-actinomycetal actinobacterial group for soils. Actinobacterial amplified ribosomal DNA restriction analysis and terminal restriction fragment length polymorphism fingerprints clustered by land use, with cultivated soils clustering apart from uncultivated soils. Actinobacterial amplicons generated with eubacterial primers were overwhelmingly from (116/126) street sediments; acidobacterial amplicons from soils (74/75). In two street samples, >90% of clones were actinomycetal. Actinomycetes are selected in terrestrial soils and sediments by cultivation, urbanisation and animal activity.  相似文献   

2.
The metagenomic approach provides direct access to diverse unexplored genomes, especially from uncultivated bacteria in a given environment. This diversity can conceal many new biosynthetic pathways. Type I polyketide synthases (PKSI) are modular enzymes involved in the biosynthesis of many natural products of industrial interest. Among the PKSI domains, the ketosynthase domain (KS) was used to screen a large soil metagenomic library containing more than 100,000 clones to detect those containing PKS genes. Over 60,000 clones were screened, and 139 clones containing KS domains were detected. A 700-bp fragment of the KS domain was sequenced for 40 of 139 randomly chosen clones. None of the 40 protein sequences were identical to those found in public databases, and nucleic sequences were not redundant. Phylogenetic analyses were performed on the protein sequences of three metagenomic clones to select the clones which one can predict to produce new compounds. Two PKS-positive clones do not belong to any of the 23 published PKSI included in the analysis, encouraging further analyses on these two clones identified by the selection process.  相似文献   

3.
The metagenomic approach provides direct access to diverse unexplored genomes, especially from uncultivated bacteria in a given environment. This diversity can conceal many new biosynthetic pathways. Type I polyketide synthases (PKSI) are modular enzymes involved in the biosynthesis of many natural products of industrial interest. Among the PKSI domains, the ketosynthase domain (KS) was used to screen a large soil metagenomic library containing more than 100,000 clones to detect those containing PKS genes. Over 60,000 clones were screened, and 139 clones containing KS domains were detected. A 700-bp fragment of the KS domain was sequenced for 40 of 139 randomly chosen clones. None of the 40 protein sequences were identical to those found in public databases, and nucleic sequences were not redundant. Phylogenetic analyses were performed on the protein sequences of three metagenomic clones to select the clones which one can predict to produce new compounds. Two PKS-positive clones do not belong to any of the 23 published PKSI included in the analysis, encouraging further analyses on these two clones identified by the selection process.  相似文献   

4.
The modular polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) have been found to be involved in natural product synthesis in many microorganisms. Study on their diversities in natural environment may provide important ecological insights, in addition to opportunities for antibacterial drugs development. In this study, the PKS and NRPS gene diversities in two coast sediments near China Zhongshan Station were studied. The phylogenetic analysis of amino acid (AA) sequences indicated that the identified ketosynthase (KS) domains were clustered with those from diverse bacterial groups, including Proteobacteria, Firmicutes, Planctomycetes, Cyanobacteria, Actinobacteria, and some uncultured symbiotic bacteria. One new branch belonging to hybrid PKS/NRPS enzyme complexes and five independent clades were found on the phylogenetic tree. The obtained adenylation (A) domains were mainly clustered within the Cyanobacteria and Proteobacteria group. Most of the identified KS and A domains showed below 80 and 60% identities at the AA level to their closest matches in GenBank, respectively. The diversities of both KS and A domains in natural environmental sample were different from those in sewage-contaminated sample. These results revealed the great diversity and novelty of both PKS and NRPS genes in Antarctic sediment.  相似文献   

5.
A 613-bp fragment of an essential ketosynthase gene from the biosynthetic pathway of aromatic polyketide antibiotics was sequenced from 99 actinomycetes isolated from soil. Phylogenetic analysis showed that the isolates clustered into clades that correspond to the various classes of aromatic polyketides. Additionally, sequencing of a 120-bp fragment from the gamma-variable region of 16S ribosomal DNA (rDNA) and subsequent comparative sequence analysis revealed incongruity between the ketosynthase and 16S rDNA phylogenetic trees, which strongly suggests that there has been horizontal transfer of aromatic polyketide biosynthesis genes. The results show that the ketosynthase tree could be used for DNA fingerprinting of secondary metabolites and for screening interesting aromatic polyketide biosynthesis genes. Furthermore, the movement of the ketosynthase genes suggests that traditional marker molecules like 16S rDNA give misleading information about the biosynthesis potential of aromatic polyketides, and thus only molecules that are directly involved in the biosynthesis of secondary metabolites can be used to gain information about the biodiversity of antibiotic production in different actinomycetes.  相似文献   

6.
马敏  唐敏  洪葵 《微生物学通报》2013,40(7):1231-1240
[目的]探究红树林土壤中聚酮合酶(Polyketide synthase,PKS)基因的多样性和新颖性.[方法]用Ⅰ型和Ⅱ型PKS基因酮基合成酶(Ketosynthase,KS)域的简并引物对海南清澜港红树林海莲、黄槿、银叶、老鼠簕4种红树根际土壤样品中DNA进行PCR扩增,之后利用PCR-限制性酶切片段多样性(PCR-RFLP)和测序分析法对Ⅰ型和Ⅱ型PKS基因的多样性进行探讨.[结果]对得到的72条Ⅰ型PKS基因的酮基合成酶(Ketosynthase,KS)域DNA序列进行PCR-RFLP分析,共得到51个可操作分类单元(Operational taxonomic unit,OTUs),其中37个OTUs为单克隆产生,没有明显的优势OTU.选取了26个代表不同OTU的克隆进行测序分析,这些序列与GenBank中已知序列的最大相似率均未超过85%. KS域氨基酸序列的系统发育分析显示,所得KS域来源广泛,包括蓝细菌门(Cyanobacteria)、变形杆菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和一些未可培养细菌;对55条PKSⅡ基因KS域DNA序列的PCR-RFLP分析后共得到25个OTUs,有两个明显的优势OTUs,代表的克隆子数所占比例超过10%.[结论]PCR-RFLP分析表明红树林根际土壤中存在着丰富多样的Ⅰ型和Ⅱ型PKS基因,且前者多样性更高;低的序列相似度表明所获得的PKSⅠ基因KS域序列独特;系统发育分析表明得到的PKSⅠ基因来源广泛.  相似文献   

7.
The ever increasing microbial resistome means there is an urgent need for new antibiotics. Metagenomics is an underexploited tool in the field of drug discovery. In this study we aimed to produce a new updated assay for the discovery of biosynthetic gene clusters encoding bioactive secondary metabolites. PCR assays targeting the polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) were developed. A range of European soils were tested for their biosynthetic potential using clone libraries developed from metagenomic DNA. Results revealed a surprising number of NRPS and PKS clones with similarity to rare Actinomycetes. Many of the clones tested were phylogenetically divergent suggesting they were fragments from novel NRPS and PKS gene clusters. Soils did not appear to cluster by location but did represent NRPS and PKS clones of diverse taxonomic origin. Fosmid libraries were constructed from Cuban and Antarctic soil samples; 17 fosmids were positive for NRPS domains suggesting a hit rate of less than 1 in 10 genomes. NRPS hits had low similarities to both rare Actinobacteria and Proteobacteria; they also clustered with known antibiotic producers suggesting they may encode for pathways producing novel bioactive compounds. In conclusion we designed an assay capable of detecting divergent NRPS and PKS gene clusters from the rare biosphere; when tested on soil samples results suggest the majority of NRPS and PKS pathways and hence bioactive metabolites are yet to be discovered.  相似文献   

8.
Soil microbial communities are believed to be comprised of thousands of different bacterial species. One prevailing idea is that "everything is everywhere, and the environment selects," implying that all types of bacteria are present in all environments where their growth requirements are met. We tested this hypothesis using actinomycete communities and type II polyketide synthase (PKS) genes found in soils collected from New Jersey and Uzbekistan (n = 91). Terminal restriction fragment length polymorphism analysis using actinomycete 16S rRNA and type II PKS genes was employed to determine community profiles. The terminal fragment frequencies in soil samples had a lognormal distribution, indicating that the majority of actinomycete phylotypes and PKS pathways are present infrequently in the environment. Less than 1% of peaks were detected in more than 50% of samples, and as many as 18% of the fragments were unique and detected in only one sample. Actinomycete 16S rRNA fingerprints clustered by country of origin, indicating that unique populations are present in North America and Central Asia. Sequence analysis of type II PKS gene fragments cloned from Uzbek soil revealed 35 novel sequence clades whose levels of identity to genes in the GenBank database ranged from 68 to 92%. The data indicate that actinomycetes are patchily distributed but that distinct populations are present in North American and Central Asia. These results have implications for microbial bioprospecting and indicate that the cosmopolitan actinomycete species and PKS pathways may account for only a small proportion of the total diversity in soil.  相似文献   

9.
Soil microbial communities are believed to be comprised of thousands of different bacterial species. One prevailing idea is that “everything is everywhere, and the environment selects,” implying that all types of bacteria are present in all environments where their growth requirements are met. We tested this hypothesis using actinomycete communities and type II polyketide synthase (PKS) genes found in soils collected from New Jersey and Uzbekistan (n = 91). Terminal restriction fragment length polymorphism analysis using actinomycete 16S rRNA and type II PKS genes was employed to determine community profiles. The terminal fragment frequencies in soil samples had a lognormal distribution, indicating that the majority of actinomycete phylotypes and PKS pathways are present infrequently in the environment. Less than 1% of peaks were detected in more than 50% of samples, and as many as 18% of the fragments were unique and detected in only one sample. Actinomycete 16S rRNA fingerprints clustered by country of origin, indicating that unique populations are present in North America and Central Asia. Sequence analysis of type II PKS gene fragments cloned from Uzbek soil revealed 35 novel sequence clades whose levels of identity to genes in the GenBank database ranged from 68 to 92%. The data indicate that actinomycetes are patchily distributed but that distinct populations are present in North American and Central Asia. These results have implications for microbial bioprospecting and indicate that the cosmopolitan actinomycete species and PKS pathways may account for only a small proportion of the total diversity in soil.  相似文献   

10.
智利海洋沉积物中放线菌多样性   总被引:1,自引:0,他引:1  
【目的】认识智利海洋沉积物中放线菌的多样性。【方法】分别采用选择性分离培养和非培养的基于16SrRNA基因序列系统发育分析方法,对来自智利南部海域海洋沉积物中放线菌多样性进行研究。采用6种选择性分离培养基分离放线菌;利用放线菌特异性引物对样品总DNA进行16SrRNA基因序列扩增并构建了16SrRNA基因克隆文库。分别挑选不同培养特征的22株放线菌和59个基因克隆进行16SrRNA基因序列的系统进化分析;测定分离的放线菌对海水的依赖性及产生抗菌活性化合物的能力。【结果】共分离到328株放线菌;挑选的22株放线菌分别属于小单孢菌属、多形孢菌属、链霉菌属、迪茨氏菌属、气微菌属和短状杆菌属;挑取的59个克隆属于40个分类单元,其中60%分类单元属于放线菌门放线菌亚纲、酸微菌亚纲和红色杆菌亚纲,另外40%的分类单元在放线菌内形成几个独立的进化分支,有可能代表放线菌新类群。22株放线菌有19株具有抗菌活性,50%的生长依赖海水的放线菌也具有抗菌活性。【结论】智利海域沉积物存在丰富的放线菌系统发育多样性并能产生活性次级代谢产物,而且还蕴藏丰富的新类型的放线菌资源。  相似文献   

11.
The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (> 99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.  相似文献   

12.
The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.  相似文献   

13.
The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.  相似文献   

14.
A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes’ (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-14C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sediment communities, mineralization potential did not depend solely on the quantity of puhB copies, underlining the need to assess gene expression. In the sediment samples, both puhB copy numbers and mineralization capacities were highly conditioned by whether or not diuron-treated soil was added. This points to transfers of degradative potential from soils to sediments. No puhA gene was detected in soil and sediment DNA extracts. Moreover, some sediments exhibited high diuron mineralization potential even though puhB genes were not detected, suggesting the existence of alternative diuron degradation pathways.  相似文献   

15.
To assess the utility of expressed sequence tag (EST) sequencing as a method of gene discovery in the ciliated protozoan Tetrahymena thermophila, we have sequenced either the 5' or 3' ends of 157 clones chosen at random from two cDNA libraries constructed from the mRNA of vegetatively growing cultures. Of 116 total non-redundant clones, 8.6% represented genes previously cloned in Tetrahymena. Fifty-two percent had significant identity to genes from other organisms represented in GenBank, of which 92% matched human proteins. Intriguing matches include an opioid-regulated protein, a glutamate-binding protein for an NMDA-receptor, and a stem-cell maintenance protein. Eleven-percent of the non-Tetrahymena specific matches were to genes present in humans and other mammals but not found in other model unicellular eukaryotes, including the completely sequenced Saccharomyces cerevisiae. Our data reinforce the fact that Tetrahymena is an excellent unicellular model system for studying many aspects of animal biology and is poised to become an important model system for genome-scale gene discovery and functional analysis.  相似文献   

16.
The microbiota of, in particular, disease-suppressive soils contains a wealth of antibiotic biosynthetic loci that are inaccessible by traditional cultivation-based techniques. Hence, we developed a methodology based on soil microbial DNA, which allowed the metagenomics-based unlocking of the relevant genes. Here, a streamlined soil metagenomics protocol is presented. The protocol consists of an optimized method to extract bacterial cells from a Rhizoctonia solani AG3 suppressive loamy sand soil followed by DNA extraction and purification, and the preparation of a clone library in an efficient host/vector system. Methods for the functional and genetic screening of the library for antibiotic production loci are also described. Using the suppressive soil, we thus produced, screened and tested an approximate 15,000-membered metagenomic library of fosmids in an Escherichia coli host. Functional screens, based on dual culturing of clone arrays with R. solani AG3 and Bacillus subtilis 168, were largely negative. Genetic screens, based on hybridizations with soil-generated probes for polyketide biosynthesis, non-ribosomal protein synthesis and gacA, revealed several inserts, of around 40-kb in size, with potential antibiotic production capacity. We present the full sequences of three selected clones. We further examine the challenges that still impinge on the metagenomic exploration of disease-suppressive soil.  相似文献   

17.
The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.  相似文献   

18.
The microbiota of, in particular, disease-suppressive soils contains a wealth of antibiotic biosynthetic loci that are inaccessible by traditional cultivation-based techniques. Hence, we developed a methodology based on soil microbial DNA, which allowed the metagenomics-based unlocking of the relevant genes. Here, a streamlined soil metagenomics protocol is presented. The protocol consists of an optimized method to extract bacterial cells from a Rhizoctonia solani AG3 suppressive loamy sand soil followed by DNA extraction and purification, and the preparation of a clone library in an efficient host/vector system. Methods for the functional and genetic screening of the library for antibiotic production loci are also described. Using the suppressive soil, we thus produced, screened and tested an approximate 15,000-membered metagenomic library of fosmids in an Escherichia coli host. Functional screens, based on dual culturing of clone arrays with R. solani AG3 and Bacillus subtilis 168, were largely negative. Genetic screens, based on hybridizations with soil-generated probes for polyketide biosynthesis, non-ribosomal protein synthesis and gacA, revealed several inserts, of around 40-kb in size, with potential antibiotic production capacity. We present the full sequences of three selected clones. We further examine the challenges that still impinge on the metagenomic exploration of disease-suppressive soil.  相似文献   

19.
A culture-independent approach was used to evaluate the bacterial community in rhizospheric and nonrhizospheric soil in which Panax ginseng had grown for 3?years. For each sample, soil was randomly collected from multiple sampling points and mixed thoroughly before genomic DNA extraction. Universal primers 27f and 1492r were used to amplify 16S rRNA genes. Clone libraries were constructed using the amplified 16S rRNA genes, and 192 white clones were chosen for further sequencing. After digestion with restriction endonuclease, 44 operational taxonomic units (OTUs) were generated for rhizospheric and 21 OTUs for nonrhizospheric soils, and the clones of each OTU were sequenced. Blast analysis showed that bacillus, acidobacteria, and proteobacteria were the dominant populations in rhizospheric soil, and proteobacteria were dominant in nonrhizospheric soil. Phylogenetic results showed that bacillus and acidobacteria were clustered into the group of uncultured bacteria in rhizospheric soil; however, proteobacteria were the unique dominant in nonrhizospheric soil.  相似文献   

20.
Type I polyketide synthases (PKSI) are modular multidomain enzymes involved in the biosynthesis of many natural products of industrial interest. PKSI modules are minimally organized in three domains: ketosynthase (KS), acyltransferase (AT), and acyl carrier protein. The KS domain phylogeny of 23 PKSI clusters was determined. The results obtained suggest that many horizontal transfers of PKSI genes have occurred between actinomycetales species. Such gene transfers may explain the homogeneity and the robustness of the actinomycetales group since gene transfers between closely related species could mimic patterns generated by vertical inheritance. We suggest that the linearity and instability of actinomycetales chromosomes associated with their large quantity of genetic mobile elements have favored such horizontal gene transfers.Reviewing Editor : Dr. Nicolas Galtier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号