首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A purification scheme has been developed for the m7G(5')pppN-pyrophosphatase from human placenta. The 1400-fold purified placental enzyme exhibited physical and enzymatic properties similar to those previously reported for a crude preparation of the human m7G(5')pppN-pyrophosphatase obtained from HeLa cells. Polyacrylamide gel analysis of enzyme fractions at different stages of purification revealed a Mr = 40,000 polypeptide that increased in relative concentration as the specific activity of the enzyme fractions increased. Copurification of this polypeptide with m7G(5')pppN-pyrophosphatase activity suggests the possibility that the 81,000-dalton native enzyme is a dimer composed of subunits of identical molecular weight. The highly purified placental enzyme, like the crude HeLa enzyme, failed to hydrolyze the cap moiety of intact mRNA even under conditions known to reduce mRNA secondary structure. Moreover, when a series of capped oligonucleotides that differed progressively in chain length by a factor of one nucleotide was tested as substrate, the rate of enzyme-catalyzed cap hydrolysis decreased as the chain length increased. The purified placental enzyme failed to release m7pG from oligonucleotides containing the cap and 3 or more additional nucleotides. These results are discussed in terms of the probable biological function of the m7G(5')pppN-pyrophosphatase.  相似文献   

2.
The fluorescence at 370 nm of the 7-methylguanosine residue (m7G) is found to be quenched when the base residue is involved in a stacking interaction with the adenosine residue in the cap structure m7G5' pppA of an eukaryotic mRNA. On the basis of the observed degree of quenching, the amounts of the stacked and unstacked forms in the cap structure have been determined at various temperatures and pH's. It has been found that at pH 6.2 effective enthalpy and entropy in the unstacked leads to stacked change are delta H degrees = 4.4 +/- 0.1 kcal/mole and delta S degrees = - 14.3 +/- 0.2 e.u., respectively. The pka value for the m7G residue is found to be 7.7 at 10 degrees C and 7.3 at 30 degrees C. The stacked structure seems to be less favourable in the deprotonated form that occurs in the higher pH solution. A similar analysis of some other cap structures indicates that the stacked form in m7G5' pppN structure is favourable if N is a purine nucleoside or a 2'-O-methylpyrimidine nucleoside but not for an unmethylated pyrimidine nucleoside.  相似文献   

3.
D L Nuss  Y Furuichi    G Koch  A J Shatkin 《Cell》1975,6(1):21-27
Extracts prepared from HeLa cells contain an enzymatic activity which cleaves m7G(5')ppp(5')Gm to m7pG and ppGm. The activity exhibits a high degree of substrate specificity and does not cleave G(5')ppp(5')G or the ring opened derivative of m7GpppGm which has lost the positive charge from the N7 position of m7G. m7GpppGm as the 5' terminal structure of intact reovirus mRNA is resistant to attack by the pyrophosphatase activity, but becomes partially sensitive in the 5' terminal fragment consisting of 7-10 nucleotides derived from the same mRNA by T1 RNAase digestion. m7G(5')ppp(5')GmpCp is completely sensitive to cleavage resulting in the release of m7pG without generation of m7GpppGm as an intermediate. These results establish the existence of a 7-methyl guanosine specific pyrophosphatase activity in HeLa cells.  相似文献   

4.
Characterization of the donor and acceptor specificities of mRNA guanylyltransferase and mRNA (guanine-7-)-methyltransferase isolated from vaccinia virus cores has enabled us to discriminate between alternative reaction sequences leading to the formation of the 5'-terminal m7G(5')pppN-structure. The mRNA guanylyltransferase catalyzes the transfer of a residue of GMP from GTP to acceptors which possess a 5'-terminal diphosphate. A diphosphate-terminated polyribonucleotide is preferred to a mononucleoside diphosphate as an acceptor suggesting that the guanylyltransferase reaction occurs after initiation of RNA synthesis. Although all of the homopolyribonucleotides tested (pp(A)n, pp(G)n, pp(I)n, pp(U)n, and pp(C)n) are acceptors for the mRNA guanylyltransferase indicating lack of strict sequence specificity, those containing purines are preferred. Only GTP and dGTP are donors in the reaction; 7-methylguanosine (m7G) triphosphate specifically is not a donor indicating that guanylylation must precede guanine-7-methylation. The preferred acceptor of the mRNA (guanine-7-)-methyltransferase is the product of the guanylyltransferase reaction, a polyribonucleotide with the 5'-terminal sequence G(5')pppN-. The enzyme can also catalyze, but less efficiently methylation of the following: dinucleoside triphosphates with the structure G(5')pppN, GTP, dGTP, ITP, GDP, GMP, and guanosine. The enzyme will not catalyze the transfer of methyl groups to ATP, XTP, CTP, UTP, or to guanosine-containing compounds with phosphate groups in either positions 2' or 3' or in 3'-5' phosphodiester linkages. The latter specificity provides an explanation for the absence of internal 7-methylguanosine in mRNA. In the presence of PPi, the mRNA guanylyltransferase catalyzes the pyrophosphorolysis of the dinucleoside triphosphate G(5')pppA, but not of m7G(5')pppA. Since PPi is generated in the process of RNA chain elongation, stabilization of the 5'-terminal sequences of mRNA is afforded by guanine-7-methylation.  相似文献   

5.
5'-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA.   总被引:18,自引:0,他引:18  
C M Wei  A Gershowitz  B Moss 《Biochemistry》1976,15(2):397-401
The 5'-terminal oligonucleotides m7G(5')ppp(5')NmpNp and m7G(5')ppp(5')NmpNmpNp were isolated by DEAE-cellulose column chromatography after enzymatic digestion of 32P- or methyl-3H-labeled poly(A)" HeLa cell mRNA. The recovery of such oligonucleotides indicated that a high percentage of mRNA has blocked termini. The dimethylated nucleoside, N6, O2'-dimethyladenosine (m6Am), as well as the four common 2'-O-methylribonucleosides (Gm, Am, Um, Cm) were present in the second position linked through the triphosphate bridge to 7-methylguanosine (m7G) whereas little m6Am was in the third position. The only internal methylated nucleoside, N6-methyladenosine (m6A), was found exclusively as m6ApC and Apm6ApC after digestion with RNase A, T1, and alkaline phosphatase. Digestion with RNase A and alkaline phat pyrimidines are present in much smaller amounts or absent from this position. These results imply a considerable sequence specificity since there are thousands of different mRNA species in HeLa cells. Our studies are consistent with the following model of HeLa cell mRNA in which Nm may be m6Am, Gm, Cm, Um, or Am and one or more m6A residues are present at an unspecified internal location: m7G(5')ppp(5')Nm-(Nm)---(G or A)-m6A-C---(A)100-200A.  相似文献   

6.
7.
K Dimock  C M Stolzfus 《Biochemistry》1978,17(17):3627-3632
Cycloleucine, a competitive inhibitor of ATP: L-methionine S-adenosyltransferase in vitro, has been used to reduce intracellular concentrations of S-adenosylmethionine and by this means to inhibit virion RNA methylation in chicken embryo cells that are infected with B77 avian sarcoma virus. Under conditions of cycloleucine treatment, where virus production as measured by incorporation of radioactive precursors or by number of infectious particles is not significantly affected, the internal m6A methylations of the avian sarcoma virus genome RNA are inhibited greater than 90%. The predominant 5'-terminal structure in viral RNA produced by treated cells in m7G(5')pppG (cap zero) rather than m7G-(5')pppGm (cap 1). It appears from these results that internal m6A and penultimate ribose methylations are not required for avian sarcoma RNA synthesis and function. Furthermore, these methylations are apparently not required for transport of genome RNA to virus assembly sites. The insensitivity of the 5'-terminal m7G methylation to inhibition by cycloleucine suggests that the affinity of S-adenosylmethionine for 7-methylguanosine methyltransferase is significantly greater than for the 2'-0-methyltransferases or the N6-methyltransferases.  相似文献   

8.
9.
KOH digestion of methyl-labeled poly(A)+ mRNA purified by (dT)-cellulose chromatography produced mononucleotide and multiple peaks of a large oligonucleotide (-6 to -8 charge) when separated on the basis of charge by Pellionex-WAX high-speed liquid chromatography in 7 M urea. Heat denaturation of the RNA before application to (dT)-cellulose was required to release contaminants (mostly 18S rRNA) that persisted even after repeated binding to (dT)-cellulose at room temperature. Analysis of the purified poly(A)+ mRNA by enzyme digestion, acid hydrolysis, and a variety of chromatographic techniques has shown that the monucleotide (53%) is due entirely to N6-methyladenosine. The large oligonucleotides (47%) were found to contain 7-methylguanosine and the 2'-0-methyl derivatives of all four nucleosides. No radioactivity was found associated with the poly(A) segment. Periodate oxidation of the mRNA followed by beta elimination released only labeled 7-methylguanine consistent with a blocked 5' terminus containing an unusual 5'-5' bond. Alkaline phosphatase treatment of intact mRNA had no effect on the migration of the KOH produced oligonucleotides on Pellionex-WAX. When RNA from which 7-methylguanine was removed by beta elimination was used for the phosphatase treatment, distinct dinucleotides (NmpNp) and trinucleotides (NmpNmpNp) occurred after KOH hydrolysis and Pellionex-WAX chromatography. Thus Novikoff hepatoma poly(A)+ mRNA molecules can contain either one or two 2'-0-methylnucleotides linked by a 5'-5' bond to a terminal 7-methylguanosine and the 2'-0-methylation can occur with any of the four nucleotides. The 5' terminus may be represented by m7G5'ppp5' (Nmp)lor2Np, a general structure proposed earlier as a possible 5' terminus for all eucaryotic mRNA molecules (Rottman, F., Shatkin, A., and Perry, R. (1974), Cell 3, 197). The composition analyses indicate that there are 3.0 N6-methyladenosine residues, 1.0 7-methylguanosine residue, and 1.7 2'-0-methylnucleoside residues per average mRNA molecule.  相似文献   

10.
Antibodies specific for 7-methylguanosine (m7G) were evaluated for their ability to inhibit the translation of chorion mRNA in a wheat germ, cell-free amino acid incorporating system. Results obtained with antibody concentrations of 0.5--1.5 microM revealed dose-dependent inhibition of [3H]-labeled amino acid incorporation into acid-insoluble radioactivity. Inhibition of translation was attributed to the interaction of anti-m7G antibodies with the 5' termini of chorion mRNAs on the basis that (a) anti-m7G antibodies coupled to Sepharose (anti-m7G-Sepharose) immunospecifically retained 5'-terminal cap structures of chorion mRNAs, i.e., m7G (5')ppp(5')Nm, (b) significant inhibition of translation required a 2-h preincubation of anti-m7G antibodies with mRNA, and (c) similar preincubation periods with anti-m7G antibodies in the presence of the competing nucleoside hapten (m7G) obviated the inhibitory effect of the antibody. The nature of the anti-m7G antibody-mRNA complex was examined by digesting chorion mRNA with nuclease P1 before (predigested) and after (postdigested) immunospecific adsorption to anti-m7G-Sepharose adsorbent. Whereas predigested preparations yielded a single cap structure of the type m7G(5')ppp(5')N, the predominating cap in the postdigested sample was m7G(5')ppp(5')NpNpN. These latter data revealed that the nucleotide sequence adjacent to the cap was not significantly masked by the antibody and suggest the utility of anti-m7G antibody as a site-specific probe.  相似文献   

11.
Although template-active RNA in dry seeds and embryos has attracted widespread interest, there have been no published reports about 5'-terminal "capping" sequences in such RNA. Boro[3H]hydride labeling of periodate-oxidized termini and high performance liquid chromatography of cap oligonucleotides have been used to compare terminal sequences in poly(A)-rich RNA from dry and germinating embryos. As is the case in germinating embryos, poly(A)-rich RNA from dry embryos contains only "type 0" cap sequences, i.e., m7G(5')ppp(5')N, in which m7G is the 7-methylguanosine cap and N is any of the classical ribonucleosides: adenosine (A), guanosine (G), cytidine (C),a nd uridine (U). Striking differences between the cell-free translational capacities of bulk messenger RNA (mRNA) populations from dry and germinating embryos are not reflected in signal differences in their proportions of "type 0" cap structures: in general, there is approximately 40% m7G(5')ppp(5')A, with roughly equivalent amounts of m7G(5')ppp(5')G and m7G(5')ppp(5')C accounting for most of the remaining sequences. The findings with mRNA from dry plant embryos serve to emphasize interesting differences between patterns of methylation in the capped and uncapped RNA molecules in higher plants and animals; the differences have not been previously noted in the literature and are the subject of brief comment in this paper.  相似文献   

12.
The 7-methylguanosine (m7G) residue present in the m7G5' ppp5'X-"CAP" structure of rabbit globin mRNA was removed quantitatively by periodate oxidation followed by beta-elimination in the presence of cyclohexylamine. The RNA thus treated was intact and exhibited no signs of degradation as examined by polyacrylamide gel electrophoresis in formamide. Assay for protein synthesis using a wheat germ cell-free system showed that the globin mRNA lacking m7G had lost most of its messenger activity. Identical treatment, of satellite tobacco necrosis virus (STNV) RNA, which does not contain the 5'-terminal "CAP" structure, resulted in no loss of its mRNA activity. Since the importance of the m7G residue in eukaryotic mRNA has not yet been shown essential for translation in vivo, both untreated and treated globin mRNAs were injected into frog oocytes and their translation into globin was measured at intervals over a ninety-six hour period. Globin mRNA either treated with periodate alone or lacking in m7g altogether were both found to have lost more than 90% of their activity in vivo.  相似文献   

13.
Cell-free protein-synthesizing extracts prepared from the brine shrimp, Artemia salina, translate methylated mRNAs. Reovirus unmethylated mRNA is inactive as a template when methylation is prevented by the inhibitor, S-adenosylhomocysteine. A salina mRNAs from both undeveloped and developed embryos contain 5'-terminal 7-methylguanosine in an inverted 5'-5' linkage through three phosphate groups to the rest of the polynucleotide chain. Removal of the 7-methylguanosine by beta elimination converts the mRNA from an active form to one inactive in protein synthesis in extracts of A. salina or wheat germ. Extracts of undeveloped and developed embryos methylate reovirus unmethylated mRNA at the 5' ends to form 5'-terminal structures of the type, m7G(5')ppp(5')G and m7G(5')ppp(5')Gm.  相似文献   

14.
Antibodies specific for intact 7-methylguanosine (m7G) were induced in rabbits and mice by immunization with nucleoside-BSA or nucleoside-hemocyanin conjugates. Since m7G undergoes alkali-catalyzed hydrolytic fission of the purine ring, modifications were made in the procedure for conjugation of m7G to proteins. After periodate oxidation, m7G was incubated with protein at pH 9.1 at 4 degrees C for one hour during which the nucleoside was found to be stable. Reduction of the Schiff base was done with t-butylamine borane for 30 minutes, and the conjugated protein was isolated quickly by gel filtration at pH 7.2. Both rabbits and mice produced antibodies that readily distinguished between the intact and hydrolyzed m7G. Antibody specificity depended largely on the presence of an intact 7-substituted imidazole ring and some cross-reaction occurred with 7-methylinosine. A weaker reaction occurred with ribothymidine and thymidine. Mouse antibodies induced by m7G-hemocyanin showed the highest specificity. They also recognized m7G in the isolated mRNA cap structure m7G(5')ppp(5')A.  相似文献   

15.
Porcine liver DNA polymerase gamma was shown previously to copurify with an associated 3' to 5' exonuclease activity (Kunkel, T. A., and Mosbaugh, D. W. (1989) Biochemistry 28, 988-995). The 3' to 5' exonuclease has now been characterized, and like the DNA polymerase activity, it has an absolute requirement for a divalent metal cation (Mg2+ or Mn2+), a relatively high NaCl and KCl optimum (150-200 mM), and an alkaline pH optimum between 7 and 10. The exonuclease has a 7.5-fold preference for single-stranded over double-stranded DNA, but it cannot excise 3'-terminal dideoxy-NMP residues from either substrate. Excision of 3'-terminally mismatched nucleotides was preferred approximately 5-fold over matched 3' termini, and the hydrolysis product from both was a deoxyribonucleoside 5'-monophosphate. The kinetics of 3'-terminal excision were measured at a single site on M13mp2 DNA for each of the 16 possible matched and mismatched primer.template combinations. As defined by the substrate specificity constant (Vmax/Km), each of the 12 mismatched substrates was preferred over the four matched substrates (A.T, T.A, C.G, G.C). Furthermore, the exonuclease could efficiently excise internally mismatched nucleotides up to 4 residues from the 3' end. DNA polymerase gamma was not found to possess detectable DNA primase, endonuclease, 5' to 3' exonuclease, RNase, or RNase H activities. The DNA polymerase and exonuclease activities exhibited dissimilar rates of heat inactivation and sensitivity to N-ethylmaleimide. After nondenaturing activity gel electrophoresis, the DNA polymerase and 3' to 5' exonuclease activities were partially resolved and detected in situ as separate species. A similar analysis on a denaturing activity gel identified catalytic polypeptides with molecular weights of 127,000, 60,000, and 32,000 which possessed only DNA polymerase gamma activity. Collectively, these results suggest that the polymerase and exonuclease activities reside in separate polypeptides, which could be derived from separate gene products or from proteolysis of a single gene product.  相似文献   

16.
We have previously identified a HeLa cell 3' exonuclease specific for degrading poly(A) tails of mRNAs. Here we report on the purification and identification of a calf thymus 54-kDa polypeptide associated with a similar 3' exonuclease activity. The 54-kDa polypeptide was shown to be a fragment of the poly(A)-specific ribonuclease 74-kDa polypeptide. The native molecular mass of the nuclease activity was estimated to be 180-220 kDa. Protein/protein cross-linking revealed an oligomeric structure, most likely consisting of three subunits. The purified nuclease activity released 5'-AMP as the reaction product and degraded poly(A) in a highly processive fashion. The activity required monovalent cations and was dependent on divalent metal ions. The RNA substrate requirement was investigated, and it was found that the nuclease was highly poly(A)-specific and that only 3' end-located poly(A) was degraded by the activity. RNA substrates capped with m(7)G(5')ppp(5')G were more efficiently degraded than noncapped RNA substrates. Addition of free m(7)G(5')ppp(5')G cap analogue inhibited poly(A) degradation in vitro, suggesting a functional link between the RNA 5' end cap structure and poly(A) degradation at the 3' end of the RNA.  相似文献   

17.
T Ishida  M Doi    M Inoue 《Nucleic acids research》1988,16(13):6175-6190
The conformation of 7-methylguanosine 5'-monophosphate (m7GMP) and its interaction with L-phenylalanine (Phe) have been investigated by X-ray crystallographic, 1H-nuclear magnetic resonance, and energy calculation methods. The N(7) methylation of the guanine base shifts m7GMP toward an anti--gauche, gauche conformation about the glycosyl and exocyclic C(4')-C(5') bonds, respectively. The prominent stacking observed between the benzene ring of Phe and guanine base of m7GMP is primarily due to the N(7) guarternization of the guanine base. The formation of a hydrogen bonding pair between the anionic carboxyl group and the guanine base further stabilizes this stacking interaction. The present results imply the importance of aromatic amino acids as a hallmark for the selective recognition of a nucleic acid base.  相似文献   

18.
The presence of pyrophosphatase activity in embryonic lens cells which cleaves pm7G and ppGm from m7G(5)pppGm was demonstrated. It was also found that m7G(5) pppG, but not G(5)pppG, was hydrolyzed, and conversion of m7GpppG to m7G*pppG, in which the 5-membered ring of the m7G moiety is open, abolished its hydrolysis. For the caps hydrolyzed, pm7G was released only in the presence of lens cellular fraction; pm7G inhibited cap hydrolysis.  相似文献   

19.
RNA labeled with [methyl-3H]methionine and/or [32P]orthophosphate was isolated from the polyribosomes of herpes simplex virus (HSV) types 1-infected cells and separated into polyadenylylated [poly(A+)]and non-polyadenylylated [poly(A-)] fractions. Virus-specific RNA was obtained by hybridization in liquid to either excess HSV DNA or filters containing immobilized HSV DNA. Analysis in denaturing sucrose gradients indicated that HSV-specific poly(A+) RNA sedimented in a broad peak, with a modal S value of 20. The ratio of [3H]methyl to 32P decreased with increasing size of RNA, suggesting that each RNA chain contains a similar sumber of methyl groups. Further analysis indicated an average of one RNase-resistant structure of the type m7G(5')pppNmpNp or m7G(5')pppNmpNmpNp per 2,780 nucleotides. The following components were identified in the 5'-terminal oligonucleotides of polyribosome-associated HSV-specific poly(A+) and poly(A-) RNA: 7-methylguanosine, N6,2'-O-dimethyladenosine, and the 2'-O-methyl derivatives of guanosine, adenosine, uridine, and denosine, and the 2'-O-methyl derivatives of guanosine, adenosine, uridine, and cytidine. The most common 5'-terminal sequences were m7G(5')pppm6Am and m7G(5')pppGm. An additional modified nucleoside, N6-methyladenosine, was present in an internal position of HSV-specific RNA.  相似文献   

20.
Nucleotidase activities resembling subclass I and subclass II of human pyrimidine 5'-nucleotidases (P5N) were detected in chicken red blood cells (RBCs). In chicken RBCs from untreated controls, the activity of the subclass II enzyme was about one third of that of subclass I enzyme, whereas that ratio was approximately 5:1 in rat or human RBCs. The subclass I activity in chicken RBCs was increased 5- to 6-fold upon erythropoietic induction by phenylhydrazine administration, but the subclass II activity did not increase under these conditions. The subclass I enzyme was purified to near homogeneity. Its molecular mass was about 35 kDa as estimated by gel filtration and SDS-polyacrylamide gel electrophoresis. Its N-terminal 12 amino acids, PEFQKKTVHIKD, were also determined. The catalytic properties of the subclass I enzyme were very similar to those of the human enzyme with regard to substrate (preferential hydrolysis of CMP, dCMP, UMP), Km values, optimum pH, and metal ion requirements. Antibodies against chicken P5N subclass I were raised in rats. The chicken P5N-I as well as the rat P5N-I proteins could be detected by antibodies in Western blot analyses, but not the P5N-II proteins. These findings indicate that P5N subclass I may have an important function in chicken erythropoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号