首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Although the specificity of multiple sclerosis (MS) brain immunoglobulins (lgs) remains unknown, the incubation of these lgs with human myelin can lead to myelin basic protein (MBP) degradation mediated by neutral proteases. In this study, we demonstrate that monoclonal antibodies (mAbs) specific to myelin components such as the CNS-specific myelin oligodendrocyte glycoprotein (MOG) and galactocerebroside (GalC) are found to induce a significant loss of MBP mediated by neutral proteases in myelin. By contrast, antibodies to periaxonal and structural components of myelin, such as MBP and myelin-associated glycoprotein, are ineffective in inducing such MBP degradation. Among the 11 different anti-MOG mAbs directed to externally located epitopes of MOG, only two were found to induce a significant degradation of MBP, suggesting that antibody-induced MBP degradation is not only antigen specific but also epitope specific. Based on the inhibition of MBP degradation in the presence of EGTA and the analysis of the degradation products obtained following incubation of myelin with mAbs to GalC and MOG (8-18C5), the neutral protease involved in this antibody-induced degradation of MBP could be calcium-activated neutral protease. Taken together, these results suggest that antibodies to GalC and MOG can play a major role in destabilizing myelin through MBP breakdown mediated by neutral proteases and thus have an important role to play in the pathogenesis of MS.  相似文献   

2.
Membrane-bound proteolysis may be implicated in the pathogenesis of demyelinating disorders including multiple sclerosis (MS). We previously found that the extent of myelin basic protein (MBP) degradation by the calcium-activated neutral protease did not differ for isolated human control myelin or MS myelin. Hence we suggested that, if involved in demyelination, the myelin neutral protease must be activated in vivo by an increased availability of free calcium. The postulate was therefore tested that immunoglobulin (Ig) binding to myelin results in activation of the myelin neutral protease, possibly through release of free calcium from calcium-binding sites of myelin. Isolated myelin from the brains of controls and patients with MS were incubated with purified Igs eluted from the brains of patients with MS or controls and degradation of MBP was assessed by quantitative electroimmunoblotting. Such degradation was significantly greater in myelin incubated in the presence of MS Igs than in myelin incubated without added Igs or in the presence of control Igs. Furthermore, the degree of MBP degradation in myelin incubated with control Igs was similar to that observed in myelin incubated without added Igs. Accordingly, it is suggested that Ig in MS brain potentiates myelin breakdown. Moreover activation of membrane-bound proteolysis by Ig binding to myelin appears to represent a hitherto undescribed pathway for demyelination in MS.  相似文献   

3.
Acid extracts of delipidated white matter of bovine brain were prepared, and their proteolytic activities toward myelin basic protein (MBP) were evaluated at pH 3 and pH 7. This was done by measuring changes in total protein using a selective dye-binding assay, and by evaluating peptide patterns by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and densitometry. At pH 7 greater than 50% of total protein and about 75% of MBP were degraded after 48 h, whereas at pH 3 it was less than 20% altogether. Neutral proteolysis of MBP entailed up to 12 different proteolytic peptide fragments in the molecular weight range of 17.5 to 6 kd. Its enzymatic nature was verified using protease inhibitors, including N-ethylmaleimide, phenylmethylsulfonyl fluoride, o-phenanthroline, and EDTA, as well as pepstatin A and alpha 2-macroglobulin. Both transient changes in percentages of some intermediate peptides and differential effects of individual inhibitors on electrophoretic peptide patterns strongly suggest a sequential type of limited proteolysis. The results also indicate that acid extracts contained several endopeptidases of which a cysteine protease appears to initiate the breakdown of MBP.  相似文献   

4.
Experiments were performed with isolated human myelin membrane preparations to analyse factors that may modulate association of myelin basic protein (MBP) with the membranes and could contribute to demyelinating processes. Transfer of membranes (5 mg protein ml-1) at 37 degrees C and pH 7.4 from a hypotonic medium, in which they were relatively stable, to one of physiological ionic strength produced three major effects: (1) initial dissociation of MBP from the membranes by a nonenzymatic process that was doubled in the presence of millimolar Ca2+/Mg2+; (2) within 10 min, the appearance in the medium of three major MBP fragments (14.4, 10.3, and 8.4 kilodaltons); and (3) progressive acidification of dissociated MBP and its fragments, probably due to deamidation. Between 1 and 6 h a steady state was apparent in which protein equivalent to 15% of the MBP originally bound to the membranes was found in the medium. The three major MBP fragments formed two-thirds of this solubilised material and appeared metabolically stable for 24 h. The kinetics of peptide formation suggested that dissociated, rather than membrane-bound, MBP was cleaved by myelin-associated neutral proteases. Two-dimensional electrophoresis and immunoblotting using two monoclonal antibodies indicated that proteolysis occurred in the vicinity of residues 35 and 75. Evidence was also obtained for removal of C-terminal arginines and relatively rapid deamidation in the C-terminal half of MBP. These modifications of MBP might also occur if extracellular fluid gained access to the compacted cytoplasmic space of the myelin sheath.  相似文献   

5.
ADP-Ribosylation of Human Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: When isolated myelin membranes were ADP-ribosylated by [32P]NAD+ either in the absence of toxin (by the membrane ADP-ribosyltransferase) or in the presence of cholera toxin, the same proteins were ADP-ribosylated in both cases and myelin basic protein (MBP) was the major radioactive product. Therefore, cholera toxin was considered a good model for ADP-ribosylation of myelin proteins. Although purified human MBP migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 20 kDa, the microheterogeneity that is masked under these conditions can be clearly demonstrated on alkaline-urea gels at pH 10.6. At this pH, MBP is resolved into several components that differ one from the other by a single charge (charge isomers). These charge isomers can be resolved on CM52 columns at pH 10.6, and several can be ADP-ribosylated. Component 1 (C-1), the most cationic charge isomer, incorporated 1.79 mol of ADP-ribose/mol of protein. C-2 and C-3 (which differ from C-1 by the loss of one and two positive charges, respectively) incorporated slightly less at 1.67 and 1.63 mol of ADP-ribose/mol of protein, respectively, whereas C-8, the least cationic, incorporated less than 0.11 mol/mol of protein. In the presence of neutral hydroxylamine, the ADP-ribosyl bond was shown to have a half-life of about 80 min, suggesting an N-glycosidic linkage between ADP-ribose and an arginyl residue of the protein. As MBP contains several components that are ADP-ribosylated to different specific activities, the use of MBP, ADP-ribosylated in the natural membrane, to identify the sites involved would yield a mixture of peptides difficult to resolve. Therefore, to identify the sites ADP-ribosylated, an endoproteinase Lys-C digest of C-1 ADP-ribosylated by cholera toxin was prepared. Two radioactive peptides were isolated by reversed-phase HPLC. Amino acid and sequence analyses identified the radioactive peptides as residues 5–13 and 54–58 of the human sequence (sp. act., 0.89 and 0.62 nmol of ADP-ribose/nmol of peptide, respectively). The ADP-ribosylated residues were identified as Arg9 and Arg54 by automated and manual Edman sequencing. Taken together with our previous observation that MBP binds GTP at a single site, these data suggest that MBP functions as part of a signal transduction system in myelin.  相似文献   

6.
Rat and guinea pig myelin membranes were incubated at physiological ionic strength with millimolar concentrations of Ca2+/Mg2+ ions (37 degrees C; pH 7.4). After 1-3 h, electrophoresis of the membranes revealed loss of 50% of 18.2- and 14.1-kilodalton (kDa) forms of myelin basic protein (MBP). Concomitantly, peptides representing 25% of the original membrane-associated MBP were detected in incubation media. Roughly equal amounts of MBP fragments with molecular masses of 10.0 and 8.4 kDa were found in media from guinea pig myelin incubations. Media from rat myelin experiments contained a major 8.4-kDa and minor 10.0- and 5.9-kDa MBP peptides. Kinetic studies implied that proteolysis occurred subsequent to MBP dissociation from the membranes. Immunoblotting studies indicated that both the 18.2- and 14.1-kDa forms of MBP were cleaved near residue 73 to produce a 10.0- and 5.9-kDa C-terminal fragment, respectively. Degradation of MBP in myelin membranes was partially inhibited by only 5-20% using leupeptin (20 microM) but up to 50% by dithiothreitol mM), phenylmethylsulphonyl fluoride (1 mM), and phosphoramidon (50 microM) but up to 50% by dithiothreitol (DDT, 10 mM). Only DDT and 1,10-phenanthroline substantially blocked the formation of the characteristic 10.0-and 5.9-kDa C-terminal fragments. This suggests that MBP, dissociating from myelin membrane preparations, is cleaved near residue 73 by a metalloendoprotease distinct from N-ethylmaleimide/leupeptin-sensitive calpains and phosphoramidon-sensitive endopeptidase 24.11.  相似文献   

7.
Racemization of Individual Aspartate Residues in Human Myelin Basic Protein   总被引:1,自引:0,他引:1  
Human myelin basic protein (MBP), a long-lived brain protein, undergoes gradual racemization of its amino acids, primarily aspartic acid and serine. Purified protein was treated at neutral pH with trypsin to yield peptides that were separated by HPLC using a C18 column. Twenty-nine peptides were isolated and analyzed for amino acid composition and aspartate racemization. Each aspartate and asparagine in the protein was racemized to a different extent, ranging from 2.2 to 17.1% D isomer. When the racemization was examined in terms of the beta-structure model of MBP, a correlation was observed in which six aspartate/asparagine residues assumed to be associated with myelin membrane lipids showed little racemization (2.2-4.9% D isomer), whereas five other aspartate residues were more highly racemized (9.9-17.1% D isomer). Although the observed aspartate racemization may be related to steric hindrance by neighboring residues and/or the protein secondary structure, interaction of aspartates with membrane lipids may also be a major factor. The data are compatible with a model in which each MBP molecule interacts with adjacent cytoplasmic layers of myelin membrane through a beta-sheet on one surface and loops and helices on the other surface, thereby stabilizing the myelin multilamellar structure.  相似文献   

8.
Jimpy (jp), myelin synthesis-deficient (jpmsd), and quaking (qk) are mutations which affect myelination to different degrees in the mouse central nervous system (CNS). Total messenger RNA (mRNA) and myelin basic protein (MBP)-specific mRNA from brains of these three mutants have been analyzed by in vitro translation and immunoprecipitation with antibody to MBP. The results indicate that the three mutations do not affect the level of total MBP-specific mRNA in the CNS but do affect the relative proportions of the various MBP-related translation products encoded in vitro. In each case the proportions of 14K and 12K Mr MBP-related translation products are reduced and the proportions of 21.5K, 18.5K, and 17K Mr MBP-related translation products are increased relative to wild type. This effect is most pronounced in jp, less so in jpmsd, and least pronounced in qk animals. The MBP-related polypeptides that accumulate in vivo have also been analyzed in the three mutants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting with antibody to MBP. The levels of all the major MBP-related polypeptides that accumulate in vivo are reduced in all three mutations. The reduction is most pronounced in jp, less in jpmsd, and least pronounced in qk animals. These results indicate that the jp, jpmsd, and qk mutations exhibit qualitatively similar phenotypic effects on MBP gene expression but the magnitude of the effect is proportional to the extent of hypomyelination in each mutant.  相似文献   

9.
Myelin basic protein (MBP) dissociated from brain myelin membranes when they were incubated (37 degrees C; pH 7.4) at physiological ionic strength. Zinc ions inhibited, and calcium promoted, this process. Protease activity in the membrane preparations cleaved the dissociated MBP into both small (less than 4 kilodaltons) and large (greater than 8 kilodaltons) fragments. The latter were detected, together with intact MBP, by gel electrophoresis of incubation media. Zinc ions appeared to act in two distinct processes. In the presence or absence of added CaCl2, zinc ions in the range 0.1-1 mM inhibited MBP-membrane dissociation. This process was relatively insensitive to heat and Zn2+ could be substituted by either copper (II) or cobalt (II) ions. A second effect was evident only in the presence of added calcium ions, when lower concentrations of Zn2+ (less than 0.1 mM) inhibited MBP-membrane dissociation and the accumulation of intact MBP in incubation media. This process was heat sensitive and only copper (II), but not cobalt (II), ions could replace Zn2+. To determine whether endogenous zinc in myelin membranes is bound to MBP, preparations were solubilised in buffers containing Triton X-100/2 mM CaCl2 and subjected to gel filtration. Endogenous zinc, as indicated by a dithizone-binding method, eluted with fractions containing both MBP and proteolipid protein (PLP). Thus, one means whereby zinc stabilises association of MBP with brain myelin membranes may be by promoting its binding to PLP.  相似文献   

10.
Brain myelin membrane preparations contain a metalloproteinase activity which degrades myelin basic protein (MBP). The activity was associated with lentil lectin-binding glycoproteins solubilized from myelin and could be detected in the presence of the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS). The metalloproteinase represented about 5% of this glycoprotein fraction and was isolated from it by chromatography on DEAE-Sephacel, CM-Sepharose, and Superose 6. The proteinase had an apparent relative molecular weight (Mr) of approximately 58,000 both by gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mr value was unaffected by the presence of reducing agents but was diminished to about 52,000 by treating the proteinase with endoglycosidase F. The purified proteinase cleaved many bonds in MBP but did not generate trichloroacetic acid-soluble products. Two major polypeptides, putatively MBP1-73 and MBP74-170, were prominent in digests of MBP by either the purified enzyme or myelin membranes. The proteinase was active between pH 7 and 9 and was inhibited by phenanthroline and dithiothreitol but not phosphoramidon or inhibitors of serine or cysteine proteinases. Histones, but not azocasein, also served as substrates for the proteinase. From its enzymic and molecular characteristics the myelin-derived metalloproteinase appears distinct from previously described enzymes.  相似文献   

11.
Incubation of myelin purified from rat spinal cord with CaCl2 (1-5 mM) in 10-50 mM Tris-HCl buffer at pH 7.6 containing 2 mM dithiothreitol resulted in the loss of both the large and small myelin basic proteins (MBPs), whereas incubation of myelin with Triton X-100 (0.25-0.5%) and 5 mM EGTA in the absence of calcium produced preferential extensive loss of proteolipid protein (PLP) relative to MBP. Inclusion of CaCl2 but not EGTA in the medium containing Triton X-100 enhanced degradation of both PLP and MBPs. The Ca2+-activated neutral proteinase (CANP) activity is inhibited by EGTA (5 mM) and partially inhibited by leupeptin and/or E-64c. CANP is active at pH 5.5-9.0, with the optimum at 7-8. The threshold of Ca2+ activation is approximately 100 microM. The 150K neurofilament protein (NFP) was progressively degraded when incubated with purified myelin in the presence of Ca2+. These results indicate that purified myelin is associated with and/or contains a CANP whose substrates include MBP, PLP, and 150K NFP. The degradation of PLP (trypsin-resistant) in the presence of detergent suggests either release of enzyme from membrane and/or structural alteration in the protein molecule rendering it accessible to proteolysis. The myelin-associated CANP may be important not only in the turnover of myelin proteins but also in myelin breakdown in brain diseases.  相似文献   

12.
Mice homozygous for the mutation myelin deficient (mld), an allele of shiverer, exhibit decreased CNS myelination, tremors, and convulsions of progressively increasing severity leading to an early death. In this report we demonstrate in mld mice that the gene encoding myelin basic protein (MBP) is expressed at decreased levels and on an abnormal temporal schedule relative to the wild-type gene. Southern blot analyses, field-inversion gel electrophoresis studies, and analyses of mld MBP cosmid clones indicate that there are multiple linked copies of the MBP gene in mld mice. We have introduced an MBP transgene into mld mice and found that myelination increases and tremors and convulsions decrease. Mld and shiverer mice with zero, one, or two copies of the MBP transgene express distinct levels of MBP mRNA and myelin. The availability of a range of mice expressing graded levels of myelin should facilitate quantitative analysis of the roles of MBP in the myelination process and of myelin in nerve function.  相似文献   

13.
Abstract: Brains of 3-week-old C57BL/6J mice were homogenized and fractionated into several subcellular components, each of which was examined for ability to synthesize the myelin basic proteins (MBPs) in vitro. Myelin basic proteins were purified from incubation mixtures by conventional means. That the products of synthesis were the myelin basic proteins was established by solubility at pH 3, co-chromatography with authentic proteins on carboxymethylcellulose and co-migration with standards in two different polyacrylamide gel electrophoretic systems. The fractions examined for their ability to synthesize MBPs were the whole homogenate, postnuclear supernatant, postmitochondrial supernatant, crude mitochondrial pellet, free ribosomes and bound ribosomes. Although there was no requirement for exogenous energy sources for protein synthesis in the whole homogenate, as the homogenate was fractionated an increasing requirement emerged. Most of the label in the MBP preparations from whole homogenate and postnuclear supernatant incubations migrated with the large (L) and small (S) MBPs on gel electrophoresis; however, as the homogenate was subfractionated and incubated, a greater percentage of the label migrated more slowly than L and S on acetic acid-urea gels. To show synthesis of the MBPs the L and S bands were cut out of these gels and rerun on sodium dodecylsulfate gels. Alternatively, MBP preparations were subjected directly to two-dimensional gel electrophoresis and the bands corresponding to L and S were excised and counted. With this method only the whole homogenate, postnuclear supernatant, postmitochondrial supernatant and free ribosomes were observed to synthesize the MBPs in vitro. The "bound" ribosomes were not observed to synthesize significant amounts of the MBPs, incubated either intact or released from the membrane. It was concluded that the free ribosomes are the principal site of synthesis of the myelin basic proteins in the brain.  相似文献   

14.
Radioligand binding studies with the water-soluble cannabinoid [3H]5'-trimethylammonium delta 8-tetrahydrocannabinol ([3H]TMA) have revealed a saturable high-affinity site in brain that is specific for cannabinoids. To determine whether endogenous compounds of brain might act upon the site physiologically, we sought inhibitors in extracts of brain. An endogenous inhibitor has been purified to homogeneity by acid extraction of rat brain followed by adsorption to a reverse-phase matrix and gel filtration chromatography. The purified inhibitor has a subunit molecular mass of 14,500 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Inhibition of [3H]TMA binding by the purified inhibitor occurs with a Ki of about 4 nM in a noncompetitive manner. The molecular weight, abundance, and extraction properties are the same as a species of myelin basic protein (MBP). The MBPs of rat, rabbit, pig, and cow also inhibit [3H]TMA binding noncompetitively with similar potencies. The purified inhibitor comigrates with rat MBP-small form on SDS-PAGE, has a similar amino acid composition, and is recognized by antibody directed against MBP. Studies of fragments of rabbit MBP suggest that the determinants of affinity for the [3H]TMA site are contained primarily within the C-terminal half of the rabbit MBP. Synthetic polycationic peptides such as polylysine and polyarginine mimic the effects of MBP, suggesting that the high-affinity cannabinoid binding site recognizes large polycations. The identification of the endogenous inhibitor of [3H]TMA binding as MBP suggests that MBP interacts physiologically with the high-affinity cannabinoid site.  相似文献   

15.
Lectin Receptors in Central Nervous System Myelin   总被引:14,自引:12,他引:2  
Abstract: Proteins from central nervous system myelin were separated by high-resolution, sodium dodecyl sulfate-pore gradient slab gel electrophoresis and the glycoproteins were detected by autoradiography after direct application of radioiodinated lectins. A surprising heterogeneity of lectin binding proteins was found associated with this highly purified membrane fraction. Iodinated wheat germ agglutinin, which has a monosaccharide specificity for N-acetyl-D-glucosamine and N-acetylneuraminic acid, revealed six major bands and two minor bands. By correlating the molecular weights (Mr) of radioiodinated protein standards with the gel concentration at the position reached by the protein (%T) using the relationship log(Mr) versus log(%T) for gradient gel systems, molecular weight estimates of 128, 300, 109, 800, 75, 300, 48, 800, 26, 100 and 23, 700 were obtained for the major glycoprotein bands and molecular weights of 98, 300 and 86, 600 for the minor bands. When the isolated myelin was extracted with chloroform-methanol-a procedure that removes the major myelin proteins, including the proteolipid protein and most of the basic proteins and hence concentrates the minor high molecular weight proteins-and analyzed after gradient gel electrophoresis, additional glycoproteins of molecular weights 607, 700, 196, 900, 175, 100, 61, 800, 52, 200 and 42, 600 were resolved with this lectin. Radioiodinated soybean agglutinin, which has a specificity for N-acetyl-D-galactosamine and D-galactose, revealed seven bands, three of which were unique to this lectin (19, 600, 19, 100 and 17,000). Iodinated concanavalin A (d -mannose, d -glucose) revealed bands similar to the wheat germ agglutinin as well as additional bands of 40, 300, 37, 300, 35, 700, 21, 800 and 20, 400. The glycoprotein specificity for these lectin binding components was demonstrated by hapten carbohydrate binding inhibition and by organic solvent extraction for removal of glycolipids. Based on these experiments using three lectins with different carbohydrate specificity, 22 lectin-reactive components were identified; however, six of these bands were removed by chloroform-methanol extraction. The variations observed in the lectin binding capacity for these different bands suggest possible carbohydrate heterogeneity for these individual glycoproteins. Although many of these bands may be dissociated subunits (monomeric polypeptides) of oligomeric complexes, the observed multiplicity of these quantitatively minor glycoproteins associated with the purified myelin membrane implies a more intricate molecular organization for the myelin sheath complex than previously believed.  相似文献   

16.
Degradation of myelin basic protein (MBP) in human man myelin was monitored by electroimmunoblotting. Problems of variation between, as well as within, electroimmunoblots were overcome by the introduction of an internal standard in each sample, thus allowing reproducible quantification of MBP. The Ca2+-dependent protease acting on MBP was active at endogenous levels of Ca2+ (congruent to 300 micrograms/g myelin) and was inhibited in the presence of Ca2+ chelators. Extensive degradation of MBP occurred rapidly in the presence of added Ca2+, reaching a plateau after a 1 h incubation (80-85% degradation). The proteolytic activity was not enhanced in the presence of 2-mercaptoethanol. It was most active at neutral pH and at temperatures approaching physiological conditions. No difference was observed between proteolytic activities of control and multiple sclerotic myelin. It is suggested that fluctuations in the accessibility of free Ca2+ to the protease may lead to the regulation of Ca2+-activated myelinolysis.  相似文献   

17.
Characterization of Basic Proteins from Goldfish Myelin   总被引:1,自引:0,他引:1  
Abstract: Myelin basic protein (MBP) from common goldfish ( Carassius auratus ) myelin was extracted with dilute mineral acid. Immunological cross-reactivity of the goldfish MBP, with polyclonal antisera raised against bovine MBP, suggested that the goldfish protein has epitopes for these antibodies. It also reacted with a monoclonal antibody specific for a seven amino acid epitope (130–137) conserved in the MBP of most mammalian species. To characterize the charge heterogeneity of this protein, we iodinated the protein with 125I and chromatographed it on a carboxymethyl cellulose-52 column together with a nonlabeled acid soluble fraction prepared from human white matter as a carrier protein. All of the goldfish protein was recovered in the unbound fraction, demonstrating that it was less cationic than the carrier protein (human MBP). We have also examined the urea alkaline gel profile of the goldfish MBP together with the human C-1, C-2, C-3, C-4, and C-8 components. The results from these experiments indicated that this MBP extracted from goldfish brain myelin lacked the microhet-erogeneity that is associated with MBPs from higher vertebrates. The MBPs from goldfish myelin were separated into their isoforms by reversed-phase HPLC. Amino acid compositions were determined for both the 17- and 14-kDa goldfish proteins. Amino acid analysis revealed similarities with the compositions of other MBPs; however, the serine content in both the 17- and 14-kDa proteins was higher than that of the human C-1, the mouse C-1 protein, and the shark proteins. The HPLC-purified 14-kDa goldfish protein was chemically cleaved with CNBr for partial sequence analysis. Even from the limited sequence obtained, the sequence ATAST was found in goldfish, which is also present in human, rabbit, and guinea pig MBPs.  相似文献   

18.
Abstract: On gel electrophoresis in dodecyl sulphate solutions shark CNS myelin showed four bands close in mobility to the proteolipid protein of bovine CNS myelin. They had apparent molecular weights of 21,000, 26,000, 27,000, and 31,500. Unlike bovine proteolipid protein, all of these shark proteins were shown to be glycosylated by staining gels with the periodate-Schiff reagent. Amino acid analyses of the polypeptides eluted from polyacrylamide gels indicated a high content of apolar amino acids and a composition approximating that of the Po protein of bovine peripheral nervous system (PNS) myelin, rather than that of the CNS proteolipid protein. The shark poly-peptide of apparent molecular weight 31,500 was obtained by elution from dodecyl sulphate gels and antibodies raised against it in rabbits. By probing of electroblots with this antiserum the four shark CNS bands were shown to share common determinants with each other, with a major shark PNS protein and with sheep and chicken major PNS glycoproteins (Po). The binding of antibody was unaffected by deglycosylation of the shark CNS polypeptides with anhydrous hydrogen fluoride. Together, these results appeared to establish that shark CNS myelin contains four proteins that are closely related to a major shark PNS protein and to the Po protein of higher species.  相似文献   

19.
 本文介绍了从人脑中分离纯化髓鞘碱性蛋白的方法,人脑组织匀浆经甲醇—氯仿脱脂、酸提取、硫酸铵沉淀和羧甲基纤维素柱层析,得到了纯化的髓鞘碱性蛋白。该蛋白在SDS聚丙烯酰胺凝胶电泳中为单一带,分子量为21kD。在聚焦电泳中测得其等电点在pH10以上,氨基酸组成分析结果也与文献值接近。这为进一步研究人脑髓鞘碱性蛋白的抗原性创造了条件。  相似文献   

20.
Purified lipophilin, a hydrophobic lipoprotein of myelin, induces a cell-mediated demyelinating disease of the central nervous system similar to experimental allergic encephalomyelitis (EAE) induced by the myelin basic protein (MBP). Guinea pigs challenged with lipophilin (emulsified with CFA) developed clinical and histological signs of disease indistinguishable from those developed by animals similarly challenged with MBP. Both lipophilin and MBP induced and elicited delayed-type hypersensitivity in animals challenged with respective antigens. Tryptophan, an essential component of the MBP-determinant for disease in guinea pigs, is required for the encephalitogenicity of lipophilin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号