首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the proapoptotic protein Bax under the control of a GAL10 promoter in Saccharomyces cerevisiae resulted in galactose-inducible cell death. Immunofluorescence studies suggested that Bax is principally associated with mitochondria in yeast cells. Removal of the carboxyl-terminal transmembrane (TM) domain from Bax [creating Bax (deltaTM)] prevented targeting to mitochondrial and completely abolished cytotoxic function in yeast cells, suggesting that membrane targeting is crucial for Bax-mediated lethality. Fusing a TM domain from Mas70p, a yeast mitochondrial outer membrane protein, to Bax (deltaTM) restored targeting to mitochondria and cytotoxic function in yeast cells. Deletion of four well-conserved amino acids (IGDE) from the BH3 domain of Bax ablated its ability to homodimerize and completely abrogated lethality in yeast cells. In contrast, several Bax mutants which retained ability to homodimerize (deltaBH1, deltaBH2, and delta1-58) also retained at least partial lethal function in yeast cells. In coimmunoprecipitation experiments, expression of the wild-type Bax protein in Rat-1 fibroblasts and 293 epithelial cells induced apoptosis, whereas the Bax (deltaIGDE) mutant failed to induce apoptosis and did not associate with endogenous wild-type Bax protein. In contrast to yeast cells, Bax (deltaTM) protein retained cytotoxic function in Rat-1 and 293 cells, was targeted largely to mitochondria, and dimerized with endogenous Bax in mammalian cells. Thus, the dimerization-mediating BH3 domain and targeting to mitochondrial membranes appear to be essential for the cytotoxic function of Bax in both yeast and mammalian cells.  相似文献   

2.
It is still unclear whether the BH3-only protein Puma (p53 up-regulated modulator of apoptosis) can prime cells to death and render antiapoptotic BH3-binding Bcl-2 homologues necessary for survival through its ability to directly interact with proapoptotic Bax and activate it. In this study, we provide further evidence, using cell-free assays, that the BH3 domain of Puma binds Bax at an activation site that comprises the first helix of Bax. We also show that, in yeast, Puma interacts with Bax and triggers its killing activity when Bcl-2 homologues are absent but not when Bcl-xL is expressed. Finally, endogenous Puma is involved in the apoptotic response of human colorectal cancer cells to the Bcl-2/Bcl-xL inhibitor ABT-737, even in conditions where the expression of Mcl-1 is down-regulated. Thus, Puma is competent to trigger Bax activity by itself, thereby promoting cellular dependence on prosurvival Bcl-2 family members.  相似文献   

3.
D C Huang  J M Adams    S Cory 《The EMBO journal》1998,17(4):1029-1039
Bcl-2 and close homologues such as Bcl-xL promote cell survival, while other relatives such as Bax antagonize this function. Since only the pro-survival family members possess a conserved N-terminal region denoted BH4, we have explored the role of this amphipathic helix for their survival function and for interactions with several agonists of apoptosis, including Bax and CED-4, an essential regulator in the nematode Caenorhabditis elegans. BH4 of Bcl-2 could be replaced by that of Bcl-x without perturbing function but not by a somewhat similar region near the N-terminus of Bax. Bcl-2 cell survival activity was reduced by substitutions in two of ten conserved BH4 residues. Deletion of BH4 rendered Bcl-2 (and Bcl-xL) inactive but did not impair either Bcl-2 homodimerization or ability to bind to Bax or five other pro-apoptotic relatives (Bak, Bad, Bik, Bid or Bim). Hence, association with these death agonists is not sufficient to promote cell survival. Significantly, however, Bcl-xL lacking BH4 lost the ability both to bind CED-4 and antagonize its pro-apoptotic activity. These results favour the hypothesis that the BH4 domain of pro-survival Bcl-2 family members allows them to sequester CED-4 relatives and thereby prevent apoptosis.  相似文献   

4.
The Bcl-2 related protein Bad is a promoter of apoptosis and has been shown to dimerize with the anti-apoptotic proteins Bcl-2 and Bcl-XL. Overexpression of Bad in murine FL5.12 cells demonstrated that the protein not only could abrogate the protective capacity of coexpressed Bcl-XL but could accelerate the apoptotic response to a death signal when it was expressed in the absence of exogenous Bcl-XL. Using deletion analysis, we have identified the minimal domain in the murine Bad protein that can dimerize with Bcl-xL. A 26-amino-acid peptide within this domain, which showed significant homology to the alpha-helical BH3 domains of related apoptotic proteins like Bak and Bax, was found to be necessary and sufficient to bind Bcl-xL. To determine the role of dimerization in regulating the death-promoting activity of Bad and the death-inhibiting activity of Bcl-xL, mutations within the hydrophobic BH3-binding pocket in Bcl-xL that eliminated the ability of Bcl-xL to form a heterodimer with Bad were tested for the ability to promote cell survival in the presence of Bad. Several of these mutants retained the ability to impart protection against cell death regardless of the level of coexpressed Bad protein. These results suggest that BH3-containing proteins like Bad promote cell death by binding to antiapoptotic members of the Bcl-2 family and thus inhibiting their survival promoting functions.  相似文献   

5.
To investigate the exact biochemical functions by which Bcl-2 regulates apoptosis, we established a stable human small cell lung carcinoma cell line, Ms-1, overexpressing wild-type human Bcl-2 or various deletion and point mutants thereof, and examined the effect of these Bcl-2 mutants on apoptosis induced by antitumor drugs such as camptothecin. Cytochrome c release, caspase-3-(-like) protease activation, and apoptosis induced by antitumor drugs were accelerated by overexpression of Bcl-2 lacking a Bcl-2 homology (BH) 1 domain (Bcl-2/ DeltaBH1), but not by that of BH2, BH3, or BH4 domain-deleted Bcl-2. A similar result was obtained upon the substitution of glycine 145 with alanine in the BH1 domain (Bcl-2/G145A), which failed to interact with either Bax or Bak. Pro-apoptotic Bax and Bak have been known to be activated in response to antitumor drugs, and Bcl-2/G145A as well as Bcl-2/DeltaBH1 also accelerated Bax- or Bak-induced apoptosis in HEK293T cells. These two mutants still retained the ability to interact with wild-type Bcl-2 and Bcl-xL, and abrogated the inhibitory effect of wild-type Bcl-2 or Bcl-xL on Bax- or Bak-induced apoptosis. In addition, immunoprecipitation studies revealed that Bcl-2/DeltaBH1 and Bcl-2/G145A interrupted the association between wild-type Bcl-2 and Bax/Bak. Taken together, our results demonstrate that Bcl-2/DeltaBH1 or Bcl-2/G145A acts as a dominant negative of endogenous anti-apoptotic proteins such as Bcl-2 and Bcl-xL, thereby enhancing antitumor drug-induced apoptosis, and that this dominant negative activity requires both a failure of interaction with Bax and Bak through the BH1 domain of Bcl-2 and retention of the ability to interact with Bcl-2 and Bcl-xL.  相似文献   

6.
Shangary S  Johnson DE 《Biochemistry》2002,41(30):9485-9495
Overexpression of Bcl-2, an anti-apoptotic oncoprotein, is commonly observed in a variety of human malignancies and is associated with resistance to chemotherapy and radiotherapy. Although the precise mechanism of Bcl-2 action remains elusive, current evidence indicates that Bcl-2 inhibits apoptosis by binding and inhibiting pro-apoptotic molecules such as Bax. Therefore, agents that disrupt the ability of Bcl-2, or other anti-apoptotic molecules, to bind to pro-apoptotic molecules may have therapeutic value. Several studies have shown that the BH3 domains of Bcl-2 and Bax are critically important for Bax/Bcl-2 heterodimerization. In this report, we designed and synthesized peptides based on the BH3 domains of three distinct Bcl-2 family members, Bcl-2, Bax and Bad. In vitro interaction assays were used to compare the abilities of the different peptides to inhibit Bax/Bcl-2 and Bax/Bcl-x(L) heterodimerization, as well as Bcl-2 and Bax homodimerization. Bax BH3 peptide (20-amino acids) potently inhibited both Bax/Bcl-2 and Bax/Bcl-x(L) interactions, exhibiting IC(50) values of 15 and 9.5 microM, respectively. The Bad BH3 peptide (21 amino acids) was slightly more potent than Bax BH3 at inhibiting Bax/Bcl-x(L) but failed to disrupt Bax/Bcl-2. Bcl-2 BH3 peptide (20-amino acids) was inactive toward Bax/Bcl-2 and had only a weak inhibitory effect on Bax/Bcl-x(L) heterodimerization. All three BH3 peptides failed to significantly inhibit homodimerization of Bcl-2 or Bax. Consistent with its ability to disrupt Bax/Bcl-2 heterodimerization, Bax BH3 peptide was able to overcome Bcl-2 overexpression and induce cytochrome c release from mitochondria of Bcl-2-overexpressing Jurkat T leukemic cells. Bad BH3 peptide, while potently inducing cytochrome c release in wild-type Jurkat cells, only partially overcame the effects of Bcl-2 overexpression. Bcl-2 BH3 failed to induce cytochrome c release, even in wild-type cells. Delivery of the Bax BH3 and Bad BH3 peptides into wild-type Jurkat cells induced comparable levels of cell death. In cells overexpressing Bcl-2, the potency of Bax BH3 peptide was similar to that seen in wild-type cells, while the efficacy of Bad BH3 peptide was reduced. By contrast, in Bcl-x(L)-overexpressing cells, Bad BH3 exhibited greater cell-killing activity than Bax BH3. The Bcl-2 BH3 peptide and a mutant Bax BH3 peptide had no appreciable effect on Jurkat cells. Together, our data suggest that agents based on the Bax BH3 domain may have therapeutic value in cancers overexpressing Bcl-2, while agents based on the BH3 domain of Bad may be more useful for tumors overexpressing Bcl-x(L).  相似文献   

7.
Bax cytosol-to-mitochondria translocation is a central event of the intrinsic pathway of apoptosis. Bcl-xL is an important regulator of this event and was recently shown to promote the retrotranslocation of mitochondrial Bax to the cytosol. The present study identifies a new aspect of the regulation of Bax localization by Bcl-xL: in addition to its role in Bax inhibition and retrotranslocation, we found that, like with Bcl-2, an increase of Bcl-xL expression levels led to an increase of Bax mitochondrial content. This finding was substantiated both in pro-lymphocytic FL5.12 cells and a yeast reporting system. Bcl-xL-dependent increase of mitochondrial Bax is counterbalanced by retrotranslocation, as we observed that Bcl-xLΔC, which is unable to promote Bax retrotranslocation, was more efficient than the full-length protein in stimulating Bax relocation to mitochondria. Interestingly, cells overexpressing Bcl-xL were more sensitive to apoptosis upon treatment with the BH3-mimetic ABT-737, suggesting that despite its role in Bax inhibition, Bcl-xL also primes mitochondria to permeabilization and cytochrome c release.  相似文献   

8.
The pro-apoptotic "BH3 domain-only" proteins of the Bcl-2 family (e.g. Bid and Bad) transduce multiple death signals to the mitochondrion. They interact with the anti-apoptotic Bcl-2 family members and induce apoptosis by a mechanism that requires the presence of at least one of the multidomain pro-apoptotic proteins Bax or Bak. Although the BH3 domain of Bid can promote the pro-apoptotic assembly and function of Bax/Bak by itself, other BH3 domains do not function as such. The latter point raises the question of whether, and how, these BH3 domains induce apoptosis. We show here that a peptide comprising the minimal BH3 domain from Bax induces apoptosis but is unable to stimulate the apoptotic activity of microinjected recombinant Bax. This relies on the inability of the peptide to directly induce Bax translocation to mitochondria or a change in its conformation. This peptide nevertheless interferes with Bax/Bcl-xL interactions in vitro and stimulates the apoptotic activity of Bax when combined with Bcl-xL. Similarly, a peptide derived from the BH3 domain of Bad stimulates Bax activity only in the presence of Bcl-xL. Thus, BH3 domains do not necessarily activate multidomain pro-apoptotic proteins directly but promote apoptosis by releasing active multidomain pro-apoptotic proteins from their anti-apoptotic counterparts.  相似文献   

9.
A novel Bax-associating protein, named MAP-1 (Modulator of Apoptosis), has been identified in a yeast two-hybrid screen. MAP-1 contains a BH3-like (BH: Bcl-2 homology) motif and mediates caspase-dependent apoptosis in mammalian cells when overexpressed. MAP-1 homodimerizes and associates with the proapoptotic Bax and the prosurvival Bcl-2 and Bcl-X(L) of the Bcl-2 family in vitro and in vivo in mammalian cells. Mutagenesis analyses revealed that the BH3-like domain in MAP-1 is not required for its association with Bcl-X(L) but is required for association with Bax and for mediating apoptosis. Interestingly, in contrast to other Bax-associating proteins such as Bcl-X(L) and Bid, which require the BH3 and BH1 domains of Bax, respectively, for binding, the binding of MAP-1 to Bax appears to require all three BH domains (BH1, BH2, and BH3) of Bax, because point mutation of the critical amino acid in any one of these domains is sufficient to abolish its binding to MAP-1. These data suggest that MAP-1 mediates apoptosis through a mechanism that involves binding to Bax.  相似文献   

10.
The Bcl-2 homology 3 (BH3) domain is crucial for the death-inducing and dimerization properties of pro-apoptotic members of the Bcl-2 protein family, including Bak, Bax, and Bad. Here we report that synthetic peptides corresponding to the BH3 domain of Bak bind to Bcl-xL, antagonize its anti-apoptotic function, and rapidly induce apoptosis when delivered into intact cells via fusion to the Antennapedia homeoprotein internalization domain. Treatment of HeLa cells with the Antennapedia-BH3 fusion peptide resulted in peptide internalization and induction of apoptosis within 2-3 h, as indicated by caspase activation and subsequent poly(ADP-ribose) polymerase cleavage, as well as morphological characteristics of apoptosis. A point mutation within the BH3 peptide that blocks its ability to bind to Bcl-xL abolished its apoptotic activity, suggesting that interaction of the BH3 peptide with Bcl-2-related death suppressors, such as Bcl-xL, may be critical for its activity in cells. While overexpression of Bcl-xL can block BH3-induced apoptosis, treatment with BH3 peptides resensitized Bcl-xL-expressing cells to Fas-mediated apoptosis. BH3-induced apoptosis was blocked by caspase inhibitors, demonstrating a dependence on caspase activation, but was not accompanied by a dramatic early loss of mitochondrial membrane potential or detectable translocation of cytochrome c from mitochondria to cytosol. These findings demonstrate that the BH3 domain itself is capable of inducing apoptosis in whole cells, possibly by antagonizing the function of Bcl-2-related death suppressors.  相似文献   

11.
细胞凋亡,即细胞程序性死亡,在多细胞生物的发育和稳态调控过程中发挥关键作用.Bcl-2家族蛋白是凋亡过程中的主要调控因子,关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点.已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡,并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互...  相似文献   

12.
Most normal cells require adhesion to extracellular matrix for survival, but the molecular mechanisms that link cell surface adhesion events to the intracellular apoptotic machinery are not understood. Bcl-2 family proteins regulate apoptosis induced by a variety of cellular insults through acting on internal membranes. A pro-apoptotic Bcl-2 family protein, Bax, is largely present in the cytosol of many cells, but redistributes to mitochondria after treatment with apoptosis-inducing drugs. Using mammary epithelial cells as a model for adhesion-regulated survival, we show that detachment from extracellular matrix induced a rapid translocation of Bax to mitochondria concurrent with a conformational change resulting in the exposure of its BH3 domain. Bax translocation and BH3 epitope exposure were reversible and occurred before caspase activation and apoptosis. Pp125FAK regulated the conformation of the Bax BH3 epitope, and PI 3-kinase and pp60src prevented apoptosis induced by defective pp125FAK signaling. Our results provide a mechanistic connection between integrin-mediated adhesion and apoptosis, through the kinase-regulated subcellular distribution of Bax.  相似文献   

13.
Vinblastine and other microtubule inhibitors used as antimitotic cancer drugs characteristically promote the phosphorylation of the key anti-apoptotic protein, Bcl-xL. However, putative sites of phosphorylation have been inferred based on potential recognition by JNK, and no direct biochemical analysis has been performed. In this study we used protein purification and mass spectrometry to identify Ser-62 as a single major site in vivo. Site-directed mutagenesis confirmed Ser-62 to be the site of Bcl-xL phosphorylation induced by several microtubule inhibitors tested. Vinblastine-treated cells overexpressing a Ser-62 --> Ala mutant showed highly significantly reduced apoptosis compared with cells expressing wild-type Bcl-xL. Co-immunoprecipitation revealed that phosphorylation caused wild-type Bcl-xL to release bound Bax, whereas phospho-defective Bcl-xL retained the ability to bind Bax. In contrast, phospho-mimic (Ser-62 --> Asp) Bcl-xL exhibited a reduced capacity to bind Bax. Functional tests were performed by transiently co-transfecting Bax in the context of different Bcl-xL mutants. Co-expression of wild-type or phospho-defective Bcl-xL counteracted the adverse effects of Bax expression on cell viability, whereas phospho-mimic Bcl-xL failed to provide the same level of protection against Bax. These studies suggest that Bcl-xL phosphorylation induced by microtubule inhibitors plays a key pro-apoptotic role at least in part by disabling the ability of Bcl-xL to bind Bax.  相似文献   

14.
15.
A pivotal step in the mitochondrial pathway of apoptosis is activation of Bak and Bax, although the molecular mechanism remains controversial. To examine whether mitochondrial apoptosis can be induced by just a lack of antiapoptotic Bcl-2-like proteins or requires direct activators of the BH3-only proteins including Bid and Bim, we studied the molecular requisites for platelet apoptosis induced by Bcl-xL deficiency. Severe thrombocytopenia induced by thrombocyte-specific Bcl-xL knock-out was fully rescued in a Bak and Bax double knock-out background but not with single knock-out of either one. In sharp contrast, deficiency of either Bid, Bim, or both did not alleviate thrombocytopenia in Bcl-xL knock-out mice. An in vitro study revealed that ABT-737, a Bad mimetic, induced platelet apoptosis in association with a conformational change of the amino terminus, translocation from the cytosol to mitochondria, and homo-oligomerization of Bax. ABT-737-induced Bax activation and apoptosis were also observed in Bid/Bim-deficient platelets. Human platelets, upon storage, underwent spontaneous apoptosis with a gradual decline of Bcl-xL expression despite a decrease in Bid and Bim expression. Apoptosis was attenuated in Bak/Bax-deficient or Bcl-xL-overexpressing platelets but not in Bid/Bim-deficient platelets upon storage. In conclusion, platelet lifespan is regulated by a fine balance between anti- and proapoptotic multidomain Bcl-2 family proteins. Despite residing in platelets, BH3-only activator proteins Bid and Bim are dispensable for Bax activation and mitochondrial apoptosis.  相似文献   

16.
Apoptosis as a form of programmed cell death (PCD) in multicellular organisms is a well-established genetically controlled process that leads to elimination of unnecessary or damaged cells. Recently, PCD has also been described for unicellular organisms as a process for the socially advantageous regulation of cell survival. The human Bcl-2 family member Bak induces apoptosis in mammalian cells which is counteracted by the Bcl-x(L) protein. We show that Bak also kills the unicellular fission yeast Schizosaccharomyces pombe and that this is inhibited by coexpression of human Bcl-x(L). Moreover, the same critical BH3 domain of Bak that is required for induction of apoptosis in mammalian cells is also required for inducing death in yeast. This suggests that Bak kills mammalian and yeast cells by similar mechanisms. The phenotype of the Bak-induced death in yeast involves condensation and fragmentation of the chromatin as well as dissolution of the nuclear envelope, all of which are features of mammalian apoptosis. These data suggest that the evolutionarily conserved metazoan PCD pathway is also present in unicellular yeast.  相似文献   

17.
To study the role of the BH3 domain in mediating pro-apoptotic and anti-apoptotic activities of Bcl-2 family members, we identified a series of novel small molecules (BH3Is) that inhibit the binding of the Bak BH3 peptide to Bcl-xL. NMR analyses revealed that BH3Is target the BH3-binding pocket of Bcl-xL. Inhibitors specifically block the BH3-domain-mediated heterodimerization between Bcl-2 family members in vitro and in vivo and induce apoptosis. Our results indicate that BH3-dependent heterodimerization is the key function of anti-apoptotic Bcl-2 family members and is required for the maintenance of cellular homeostasis.  相似文献   

18.
During apoptosis, proapoptotic factors are released from mitochondria by as yet undefined mechanisms. Patch-clamping of mitochondria and proteoliposomes formed from mitochondrial outer membranes of mammalian (FL5.12) cells has uncovered a novel ion channel whose activity correlates with onset of apoptosis. The pore diameter inferred from the largest conductance state of this channel is approximately 4 nm, sufficient to allow diffusion of cytochrome c and even larger proteins. The activity of the channel is affected by Bcl-2 family proteins in a manner consistent with their pro- or antiapoptotic properties. Thus, the channel activity correlates with presence of proapoptotic Bax in the mitochondrial outer membrane and is absent in mitochondria from cells overexpressing antiapoptotic Bcl-2. Also, a similar channel activity is found in mitochondrial outer membranes of yeast expressing human Bax. These findings implicate this channel, named mitochondrial apoptosis-induced channel, as a candidate for the outer-membrane pore through which cytochrome c and possibly other factors exit mitochondria during apoptosis.  相似文献   

19.
Certain Bcl-2 family members promote cell survival, whereas others promote apoptosis. To explore further how heterodimerization of opposing members affects survival activity, we have compared the abilities of the anti-apoptotic Bcl-w and A1 to bind to the pro-apoptotic Bax, Bak, Bad and Bik and to protect cells from their cytotoxic action. Bcl-w co-immunoprecipitated from cell lysates with Bax, Bak, Bad and Bik, but A1 bound only Bak and Bik. Mutation of A1 at a highly conserved glycine within the BH1 domain prevented binding, but the comparable Bcl-w mutant still bound Bak, Bad and Bik, indicating that the glycine is not essential for all heterodimerization. Bcl-w and A1 protected against apoptosis induced by over-expression of Bax or Bad but not that induced by Bak or Bik. With several gene pairs, binding and protection were discordant. The results may reflect critical threshold affinities but also suggest that certain pro-apoptotic proteins may also contribute to apoptosis by a mechanism independent of binding pro-survival proteins.  相似文献   

20.
Antiapoptotic Bcl-2 family proteins inhibit apoptosis in cultured cells by binding BH3 domains of proapoptotic Bcl-2 family members via a hydrophobic BH3 binding groove on the protein surface. We investigated the physiological importance of the BH3 binding groove of an antiapoptotic Bcl-2 protein in mammals in vivo by analyzing a viral Bcl-2 family protein. We show that the gamma-herpesvirus 68 (gammaHV68) Bcl-2 family protein (gammaHV68 v-Bcl-2), which is known to inhibit apoptosis in cultured cells, inhibits both apoptosis in primary lymphocytes and Bax toxicity in yeast. Nuclear magnetic resonance determination of the gammaHV68 v-Bcl-2 structure revealed a BH3 binding groove that binds BH3 domain peptides from proapoptotic Bcl-2 family members Bax and Bak via a molecular mechanism shared with host Bcl-2 family proteins, involving a conserved arginine in the BH3 peptide binding groove. Mutations of this conserved arginine and two adjacent amino acids to alanine (SGR to AAA) within the BH3 binding groove resulted in a properly folded protein that lacked the capacity of the wild-type gammaHV68 v-Bcl-2 to bind Bax BH3 peptide and to block Bax toxicity in yeast. We tested the physiological importance of this v-Bcl-2 domain during viral infection by engineering viral mutants encoding a v-Bcl-2 containing the SGR to AAA mutation. This mutation resulted in a virus defective for both efficient reactivation of gammaHV68 from latency and efficient persistent gammaHV68 replication. These studies demonstrate an essential functional role for amino acids in the BH3 peptide binding groove of a viral Bcl-2 family member during chronic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号