首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The May-Hegglin anomaly (MHA) is an autosomal dominant platelet disorder of unknown etiology. It is characterized by thrombocytopenia, giant platelets, and leukocyte inclusion bodies, and affected heterozygotes are predisposed to bleeding episodes. The MHA gene has recently been localized, by means of linkage analysis, to a 13.6-cM region on chromosome 22, and the complete chromosome 22 sequence has been reported. We recently performed a genome scan for the MHA gene in 29 members of a large, multigenerational Italian family, and we now confirm that the MHA locus is on chromosome 22q12. 3-13.1. The maximal two-point LOD score of 4.50 was achieved with the use of marker D22S283, at a recombination fraction of.05. Haplotype analysis narrowed the MHA critical region to 6.6 cM between markers D22S683 and D22S1177. It is of note that the chromosome 22 sequence allowed all markers to be ordered correctly, identified all the candidate genes and predicted genes, and specifically determined the physical size of the MHA region to be 0. 7 Mb. These results significantly narrow the region in which the MHA gene is located, and they represent the first use of chromosome 22 data to positionally clone a disease gene.  相似文献   

2.
Macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly) is a rare autosomal dominant disorder characterized by thrombocytopenia, giant platelets, and D?hle body-like inclusions in leukocytes. To determine the genetic basis of this disorder, we performed a genome-wide screen for linkage in three families with May-Hegglin anomaly. For the pooled analysis of the three families, three markers on chromosome 22 had two-point logarithm-of-difference (lod) scores greater than 3, with a maximum lod score of 3.91 at a recombination fraction (theta) of 0.076 for marker D22S683. Within the largest family (MHA-1), the maximum lod score was 5.36 at theta=0 at marker D22S445. Fine mapping of recombination events using eight adjacent markers indicated that the minimal disease region of family MHA-1 alone is in the approximately 26 cM region from D22S683 to the telomere. The maximum lod score for the three families combined was 5.84 at theta=0 for marker IL2RB. With the assumption of locus homogeneity, haplotype analysis of family MHA-4 indicated the disease region is centromeric to marker D22S1045. These data best support a minimal disease region from D22S683 to D22S1045, a span of about 1 Mb of DNA that contains 17 known genes and 4 predicted genes. Further analysis of this region will identify the genetic basis of May-Hegglin anomaly, facilitating subsequent characterization of the biochemical role of the disease gene in platelet formation.  相似文献   

3.
Congenital cataract is a clinically and genetically highly heterogeneous eye disorder, with autosomal dominant inheritance being most common. We investigated a large seven-generation family with 74 individuals affected by autosomal dominant congenital cataract (ADCC). The phenotype in this family can be described as "central pouchlike" cataract with sutural opacities, and it differs from the other mapped cataracts. We performed linkage analysis with microsatellite markers in this family and excluded the known candidate genes. A genomewide search revealed linkage to markers on chromosome 15, with a maximum two-point LOD score of 5.98 at straight theta=0 with marker D15S117. Multipoint analysis also gave a maximum LOD score of 5.98 at D15S117. Multipoint and haplotype analysis narrowed the cataract locus to a 10-cM region between markers D15S209 and D15S1036, closely linked to marker D15S117 in q21-q22 region of chromosome 15. This is the first report of a gene for a clinically new type of ADCC at 15q21-22 locus.  相似文献   

4.
In several cases of familial glucocorticoid deficiency (FGD), referred to as FGD type 1, mutations have been described in the coding exon of the adrenocorticotropin receptor (melanonocortin receptor type 2, MC2R) gene. However, for the majority of cases (FGD type 2), no mutations were found in this gene. In the more informative families, the involvement of the MC2R locus could be excluded by linkage or sequencing analysis and, as there was no obvious candidate gene, a genome linkage scan was performed. Fourteen families were studied in this report. Evidence of linkage was found with markers on chromosome 8q in three out of the 14 families (maximum heterogeneity LOD score of 2.81 at D8S1763). These three families were consanguineous and the gene could be located by homozygosity mapping between markers D8S285 and D8S1718 in a 8.8-cM region. No potential candidate genes were apparent in the region. Linkage to this region could be excluded in some families from our sample giving highly negative LOD scores with the markers of the region. This result suggests that at least one other gene, located on a different region, must be responsible for FGD in these families and provides new evidence of genetic heterogeneity of this disorder.  相似文献   

5.
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).  相似文献   

6.
Split hand/split foot (SHSF; also known as ectrodactyly) is a human developmental disorder characterized by missing central digits and other distal limb malformations. An association between SHSF and cytogenetically visible rearrangements of chromosome 7 at bands q21-q22 provides compelling evidence for the location of a causative gene at this location, and the locus has been designated SHFD1. In the present study, marker loci were localized to the SHFD1 critical region through the analysis of somatic cell hybrids derived from individuals with SHSF and cytogenetic abnormalities involving the 7q21-q22 region. Combined genetic and physical data suggest that the order of markers in the SHFD1 critical region is cen-D7S492-D7S527-(D7S479-D7S491)-SHFD1-++ +D7S554-D7S518-qter. Dinucleotide repeat polymorphisms at three of these loci were used to test for linkage of SHSF to this region in a large pedigree that demonstrates autosomal dominant SHSF. Evidence against linkage of the SHSF gene to 7q21-q22 was obtained in this pedigree. Therefore, combined molecular and genetic data provide evidence for locus heterogeneity in autosomal dominant SHSF. We propose the name SHSF2 for this second locus.  相似文献   

7.
Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. At least two distinct forms of ADPKD are now well defined. In approximately 86% of affected European families, a gene defect localized to 16p13.3 was responsible for ADPKD, while a second locus has been recently localized to 4q13-q23 as candidate for the disease in the remaining families. We present confirmation of linkage to microsatellite markers on chromosome 4q in eight Spanish families with ADPKD, in which the disease was not linked to 16p13.3. By linkage analysis with marker D4S423, a maximum lod score of 9.03 at a recombination fraction of .00 was obtained. Multipoint linkage analysis, as well as a study of recombinant haplotypes, placed the PKD2 locus between D4S1542 and D4S1563, thereby defining a genetic interval of approximately 1 cM. The refined map will serve as a genetic framework for additional genetic and physical mapping of the region and will improve the accuracy of presymptomatic diagnosis of PKD2.  相似文献   

8.
Primary systemic carnitine deficiency (SCD) is a rare hereditary disorder transmitted by an autosomal recessive mode of inheritance. The disorder includes cardiomyopathy, muscle weakness, hypoketotic coma with hypoglycemia, and hyperammonemia. In this study, we conducted a linkage analysis of a Japanese SCD family with a proband-a 9-year-old girl-and 26 members. The serum and urinary carnitine levels were determined for all members. The entire genome was searched for linkage to the gene locus for SCD, by use of a total of approximately 300 polymorphic markers located approximately 15-20 cM apart. In the family, there were two significantly different phenotypes, in terms of serum free-carnitine levels: low serum free-carnitine level (29.5+/-5.0 microM; n=14) and normal serum free-carnitine level (46.8+/-6.2 microM; n=12). There was no correlation of urinary free-carnitine levels with the low serum-level phenotype (putative heterozygote), but in normal phenotypes (wild type) urinary levels decreased as the serum levels decreased; renal resorption of free carnitine appeared to be complete in wild-type individuals, when the serum free-carnitine level was <36 microM. Linkage analysis using an autosomal dominant mode of inheritance of heterozygosity revealed a tight linkage between the disease allele and D5S436 on chromosome 5q, with a two-point LOD score of 4.98 and a multipoint LOD score of 5.52. The haplotype analysis revealed that the responsible genetic locus lies between D5S658 and D5S434, which we named the "SCD" locus. This region was syntenic with the jvs locus, which is responsible for murine SCD. Phylogenic conversion of the SCD locus strongly suggests involvement of a single gene, in human SCD.  相似文献   

9.
Familial benign polycythemia (FBP) (OMIM 263400) is a rare autosomal recessive condition characterized by erythrocytosis, normal leukocyte and platelet counts, normal uric acid level, and usually increased erythropoietin production. There is a high incidence of this disorder in Chuvashia (Russian Federation), probably due to a founder effect. In an attempt to locate the gene responsible for this disorder, we have carried out linkage studies in 12 Chuvash families, with 35 affected and 32 unaffected members. Linkage to the erythropoietin and erythropoietin receptor loci was excluded, and the FBP gene was assigned to the region of chromosome 11q23 between D11S4142 and D11S1356, with a maximal lod score of 6.61.  相似文献   

10.
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder that affects pigment production and platelet function and causes the deposition of a ceroid-like material in various tissues. Variability in the phenotype and the presence of several potential mouse models suggest that HPS may be a heterogeneous disorder. In order to identify a gene responsible for HPS, we collected blood samples from a relatively homogeneous population in Puerto Rico where the HPS carrier frequency is estimated to be 1 in 21. Analysis of pooled DNA samples allowed us to rapidly screen the genome for candidate loci, and significant evidence for linkage was detected for a marker on chromosome 10q. This region of the human genome is conserved syntenically with the region on mouse chromosome 19 where two possible mouse models for HPS, pale ear and ruby eye, are located. This linkage result was verified with additional markers, and a maximum LOD score of 5.07 at theta = .001 was calculated for marker D10S198. Haplotype analysis places the HPS gene in a region of approximately 14 cM that contains the markers D10S198 and D10S1239.  相似文献   

11.
We recently mapped the gene for ataxia-telangiectasia group A (ATA) to chromosome 11q22-23 by linkage analysis, using the genetic markers THY1 and pYNB3.12 (D11S144). The most likely order was cent-AT-S144-THY1. The present paper describes further mapping of the AT locus by means of a panel of 10 markers that span approximately 60 cM in the 11q22-23 region centered around S144 and THY1. Location scores indicate that three contiguous subsegments within the [S144-THY1] segment, as well as three contiguous segments telomeric to THY1, are each unlikely to contain the AT locus, while the more centromeric [STMY-S144] segment is most likely to contain the AT locus. These data, together with recent refinements in the linkage and physical maps of 11q22-23, place the AT locus at 11q23.  相似文献   

12.
Malignant hyperthermia susceptibility (MHS) is a potentially lethal, hereditary disorder of skeletal muscle that may be triggered by inhalation anesthetics and depolarizing muscle relaxants. Defects in the gene encoding the ryanodine receptor (RYR1) localized on human chromosome 19q13.1 have been proposed to be responsible for MHS. Using a chromosome 19-specific human/hamster somatic cell hybrid mapping panel, we were able to determine that four closely linked microsatellite repeat markers bracket RYR1 with the order 19cen-D19S75-D19S191-RYR1-(D19S47, D19S190)-19ter. Application of the four markers to genetic studies of MHS showed recombination between the markers and MHS in two families, with linkage analysis apparently excluding the MHS locus from the RYR1 region of 19q13.1. These results therefore support the recent observations of genetic heterogeneity in MHS.  相似文献   

13.
Multiple synostoses syndrome is an autosomal dominant disorder characterized by premature onset of joint fusions, which initially affect the interphalangeal joints, by characteristic facies, and by deafness. We performed linkage analysis on a large Hawaiian family with multiple synostoses syndrome. Because another autosomal dominant disorder, proximal symphalangism, shares some clinical symptoms with multiple synostoses syndrome and has been linked to markers at loci at chromosome 17q21-22, we tested the hypothesis that multiple synostoses syndrome is linked to the same chromosomal region. Using polymorphic markers from the proximal symphalangism interval, we conducted linkage analysis and showed that the multiple synostoses-syndrome phenotype is linked to the same chromosomal region. A maximum LOD score of 3.98 at recombination fraction of .00 was achieved for the marker at locus D17S787. Further genetic analysis identified individuals with recombinant genotypes, allowing localization of the disease gene within the interval D17S931-D17S792, a 16-cM region. These data provide evidence that multiple synostoses syndrome and proximal symphalangism may be allelic disorders.  相似文献   

14.
We have previously reported an autosomal recessive form of congenital muscular dystrophy, characterized by proximal girdle weakness, generalized muscle hypertrophy, rigidity of the spine, and contractures of the tendo Achilles, in a consanguineous family from the United Arab Emirates. Early respiratory failure resulting from severe diaphragmatic involvement was present. Intellect and the results of brain imaging were normal. Serum creatine kinase levels were grossly elevated, and muscle-biopsy samples showed dystrophic changes. The expression of the laminin-alpha2 chain of merosin was reduced on several fibers, but linkage analysis excluded the LAMA2 locus on chromosome 6q22-23. Here, we report the results of genomewide linkage analysis of this family, by use of homozygosity mapping. In all four affected children, an identical homozygous region was identified on chromosome 1q42, spanning 6-15 cM between flanking markers D1S2860 and D1S2800. We have identified a second German family with two affected children having similar clinical and histopathological features; they are consistent with linkage to the same locus. The cumulative LOD score was 3.57 (straight theta=.00) at marker D1S213. This represents a novel locus for congenital muscular dystrophy. We suggest calling this disorder "CMD1B." The expression of three functional candidate genes in the CMD1B critical region was investigated, and no detectable changes in their level of expression were observed. The secondary reduction in laminin-alpha2 chain in these families suggests that the primary genetic defect resides in a gene coding for a protein involved in basal lamina assembly.  相似文献   

15.
Familial exudative vitreoretinopathy (FEVR) is an ocular disorder characterized by deficient vascularization of the peripheral retina and causes visual loss attributable to various types of retinal detachment. The locus of the gene responsible for the autosomal dominant form of FEVR (EVR1) has been assigned to 11q13-23. However, a detailed evaluation of the critical region has not been made. We present the results of linkage analysis of the EVR1 locus on 11q13-23 in 43 individuals belonging to seven unrelated families of Japanese origin. Multipoint analysis has shown that six families out of the seven are linked with 11q13-23 markers. Haplotype analysis reveals that the putative region is probably flanked by polymorphic markers D11S1362 and CHLC.GATA30G01, which are approximately 200 kb apart, although the recombination events in small families such as presented in this study should be interpreted cautiously.  相似文献   

16.
John P  Ali G  Chishti MS  Naqvi SM  Leal SM  Ahmad W 《Human genetics》2006,118(5):665-667
Alopecia with mental retardation syndrome is a rare autosomal recessive disorder characterized clinically by total or partial alopecia and mental retardation. In an effort to understand the molecular bases of this form of alopecia syndrome, large Pakistani consanguineous kindred with multiple affected individuals has been ascertained from a remote region in Pakistan. Genome wide scan mapped the disease locus on chromosome 3q26.33–q27.3. A maximum two-point LOD score of 3.05 (θ=0.0) was obtained at marker D3S3583. Maximum multipoint LOD score exceeding 5.0, obtained with several markers, supported the linkage. Recombination events observed in affected individuals localized the disease locus between markers D3S1232 and D3S2436, spanning 11.49-cM region on chromosome 3q26.33–q27.3. Sequence analysis of a candidate gene ETS variant gene 5 from DNA samples of two affected individuals of the family revealed no mutation.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disorder characterized by the death of motor neurons in the cortex, brain stem, and spinal cord. Despite intensive research the basic pathophysiology of ALS remains unclear. Although most cases are sporadic, approximately 10% of ALS cases are familial (FALS). Mutations in the Cu/Zn superoxide dismutase (SOD1) gene cause approximately 20% of FALS. The gene(s) responsible for the remaining 80% of FALS remain to be found. Using a large European kindred without SOD1 mutation and with classic autosomal dominant adult-onset ALS, we have identified a novel locus by performing a genome scan and linkage analysis. The maximum LOD score is 4.5 at recombination fraction 0.0, for polymorphism D18S39. Haplotype analysis has identified a 7.5-cM, 8-Mb region of chromosome 18q21, flanked by markers D18S846 and D18S1109, as a novel FALS locus.  相似文献   

18.
Charcot-Marie-Tooth disease (CMT) is the most common inherited motor and sensory neuropathy. The neuronal form of this disorder is referred to as Charcot-Marie-Tooth type II disease (CMT2). CMT2 is usually inherited as an autosomal dominant trait with a variable age at onset of symptoms associated with progressive axonal neuropathy. In some families, the locus that predisposes to CMT2 has been demonstrated to map to the distal portion of the short arm of chromosome 1. Other families with CMT2 do not show linkage with 1p markers, suggesting genetic heterogeneity in CMT2. We investigated linkage in a single large kindred with autosomal dominant CMT2. The gene responsible for CMT2 in this kindred (CMT2B) was mapped to the interval between the microsatellite markers D3S1769 and D3S1744 in the 3q13-22 region. Study of additional CMT2 kindreds should serve to further refine the disease gene region and may ultimately lead to the identification of a gene defect that underlies the CMT2 phenotype.  相似文献   

19.
Myoclonus-dystonia (M-D) is an autosomal dominant disorder characterized by myoclonic and dystonic muscle contractions that are often responsive to alcohol. The dopamine D2 receptor gene (DRD2) on chromosome 11q has been implicated in one family with this syndrome, and linkage to a 28-cM region on 7q has been reported in another. We performed genetic studies, using eight additional families with M-D, to assess these two loci. No evidence for linkage was found for 11q markers. However, all eight of these families showed linkage to chromosome 7 markers, with a combined multipoint LOD score of 11.71. Recombination events in the families define the disease gene within a 14-cM interval flanked by D7S2212 and D7S821. These data provide evidence for a major locus for M-D on chromosome 7q21.  相似文献   

20.
We have recently assigned the facioscapulohumeral muscular dystrophy (FSHD) gene to chromome 4 by linkage to the microsatellite marker Mfd 22 (locus D4S171). We now report that D4S139, a VNTR locus, is much more closely linked to FSHD. Two-point linkage analysis between FSHD and D4S139 in nine informative families showed a maximum combined lod score (Zmax) of 17.28 at a recombination fraction theta of 0.027. Multipoint linkage analysis between FSHD and the loci D4S139 and D4S171 resulted in a peak lod score of 20.21 at 2.7 cM from D4S139. Due to the small number of recombinants found with D4S139, the position of the FSHD gene relative to that of D4S139 could not be established with certainty. D4S139 was mapped to chromosome 4q35-qter by in situ hybridization, thus firmly establishing the location of the FSHD gene in the subtelomeric region of chromosome 4q. One small family yielded a negative lod score for D4S139. In the other families no significant evidence for genetic heterogeneity was obtained. Studies of additional markers and new families will improve the map of the FSHD region, reveal possible genetic heterogeneity, and allow better diagnostic reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号