首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L(1)-L(2)) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation (1). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from -37 to -32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L(1)-L(2)) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.  相似文献   

2.
Trichinella spiralis infection causes hyperexcitability in enteric after-hyperpolarising (AH) sensory neurons that is mimicked by neural, immune or inflammatory mediators known to stimulate adenylyl cyclase (AC)/cyclic 3',5'-adenosine monophosphate (cAMP) signaling. The hypothesis was tested that ongoing modulation and sustained amplification in the AC/cAMP/phosphorylated cAMP related element binding protrein (pCREB) signaling pathway contributes to hyperexcitability and neuronal plasticity in gut sensory neurons after nematode infection. Electrophysiological, immunological, molecular biological or immunochemical studies were done in T. spiralis-infected guinea-pigs (8000 larvae or saline) after acute-inflammation (7 days) or 35 days p.i., after intestinal clearance. Acute-inflammation caused AH-cell hyperexcitability and elevated mucosal and neural tissue levels of myeloperoxidase, mast cell tryptase, prostaglandin E2, leukotrine B4, lipid peroxidation, nitric oxide and gelatinase; lower level inflammation persisted 35 days p.i. Acute exposure to blockers of AC, histamine, cyclooxygenase or leukotriene pathways suppressed AH-cell hyperexcitability in a reversible manner. Basal cAMP responses or those evoked by forskolin (FSK), Ro-20-1724, histamine or substance P in isolated myenteric ganglia were augmented after T. spiralis infection; up-regulation also occurred in AC expression and AC-immunoreactivity in calbindin (AH) neurons. The cAMP-dependent slow excitatory synaptic transmission-like responses to histamine (mast cell mediator) or substance P (neurotransmitter) acting via G-protein coupled receptors (GPCR) in AH neurons were augmented by up to 2.5-fold after T. spiralis infection. FSK, histamine, substance P or T. spiralis acute infection caused a 5- to 30-fold increase in cAMP-dependent nuclear CREB phosphorylation in isolated ganglia or calbindin (AH) neurons. AC and CREB phosphorylation remained elevated 35 days p.i.. Ongoing immune activation, AC up-regulation, enhanced phosphodiesterase IV activity and facilitation of the GPCR-AC/cAMP/pCREB signaling pathway contributes to T. spiralis-induced neuronal plasticity and AH-cell hyperexcitability. This may be relevant in gut nematode infections and inflammatory bowel diseases, and is a potential therapeutic target.  相似文献   

3.
Neuropeptides in sensory neurons   总被引:3,自引:0,他引:3  
Substance P, somatostatin, VIP, CCK, angiotensin II, and bombesin have all been localized by immunohistochemical or radioimmunological means in neurons of sensory ganglia or in the dorsal horn of the spinal cord. Most of these neuropeptides have electrophysiological effects on spinal neurons and for substance P and somatostatin, these effects have been associated with particular sensory modalities. Newer investigations using the compound capsaicin are consistent with the hypothesis that substance P is an important neurochemical mediator of certain kinds of noxious peripheral stimuli. The newly described substance P antagonists promise to be important pharmacological tools for investigation of the long-neglected neurochemical bases of sensory neuron function. Elaboration of the roles of these sensory neuropeptides will no doubt shed light on many disease states in which there seems to be sensory neuron involvement.  相似文献   

4.
5.
Painful channels in sensory neurons   总被引:3,自引:0,他引:3  
Lee Y  Lee CH  Oh U 《Molecules and cells》2005,20(3):315-324
Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as Aa, -b, -d and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.  相似文献   

6.
The spinal ganglia were transplanted into the mesocolon of adult cats for periods of from 1 day to 9 months. About 30% of differentiated sensory neurons survived during the longterm transplantation. The intensive regeneration of the sensory neurons processes was characteristic of the transplanted neurons. Total myelinization of the regenerating nerves occurred during the 3rd--5th month. Potential regeneration capacity of the differentiated neurons and possibly of their prolonged transplantation were revealed.  相似文献   

7.
The c-fes protooncogene encodes a nonreceptor tyrosine kinase (Fes) implicated in cytokine receptor signal transduction, granulocyte survival, and myeloid differentiation. To study the role of c-fes during myelopoiesis, we generated embryonic stem (ES) cells with a targeted disruption of the c-fes locus. Targeted mutagenesis deletes the C-terminal SH2 and tyrosine kinase domains of c-fes (referred to as c-fes(Delta c/Delta c)). We demonstrate that the c-fes(Delta c/Delta c) allele results in a truncated Fes protein that retains the N-terminal oligomerization domain, but lacks both the SH2 and the tyrosine kinase domain. In vitro differentiation of c-fes(Delta c/Delta c) ES cells results in hyperproliferation of an early myeloid cell. Generation of c-fes(Delta c/Delta c) mutant chimeric mice causes lethality by E13.5 with embryos exhibiting pleiotropic defects, the most striking being cardiovascular abnormalities. These results establish that c-fes is an important regulator of myeloid cell proliferation and embryonic development.  相似文献   

8.
Unraveling intra- and inter-cellular signaling networks managing cell-fate control, coordinating complex differentiation regulatory circuits and shaping tissues and organs in living systems remain major challenges in the post-genomic era. Resting on the laurels of past-century monolayer culture technologies, the cell culture community has only recently begun to appreciate the potential of three-dimensional mammalian cell culture systems to reveal the full scope of mechanisms orchestrating the tissue-like cell quorum in space and time. Capitalizing on gravity-enforced self-assembly of monodispersed primary embryonic mouse cells in hanging drops, we designed and characterized a three-dimensional cell culture model for ganglion-like structures. Within 24h, a mixture of mouse embryonic fibroblasts (MEF) and cells, derived from the dorsal root ganglion (DRG) (sensory neurons and Schwann cells) grown in hanging drops, assembled to coherent spherical microtissues characterized by a MEF feeder core and a peripheral layer of DRG-derived cells. In a time-dependent manner, sensory neurons formed a polar ganglion-like cap structure, which coordinated guided axonal outgrowth and innervation of the distal pole of the MEF feeder spheroid. Schwann cells, present in embryonic DRG isolates, tended to align along axonal structures and myelinate them in an in vivo-like manner. Whenever cultivation exceeded 10 days, DRG:MEF-based microtissues disintegrated due to an as yet unknown mechanism. Using a transgenic MEF feeder spheroid, engineered for gaseous acetaldehyde-inducible interferon-beta (ifn-beta) production by cotransduction of retro-/ lenti-viral particles, a short 6-h ifn-beta induction was sufficient to rescue the integrity of DRG:MEF spheroids and enable long-term cultivation of these microtissues. In hanging drops, such microtissues fused to higher-order macrotissue-like structures, which may pave the way for sophisticated bottom-up tissue engineering strategies. DRG:MEF-based artificial micro- and macrotissue design demonstrated accurate key morphological aspects of ganglions and exemplified the potential of self-assembled scaffold-free multicellular micro-/macrotissues to provide new insight into organogenesis.  相似文献   

9.
Summary Intracellular recordings were made from neurons of the trigeminal sensory ganglia of young adult sea lampreys. Receptive fields were mapped, and four classes of sensory cells were identified. Touch cells gave rapidly adapting responses to indentation of the skin. Pressure cells gave slowly adapting responses to indentation of the skin. Pit organ cells gave slowly adapting responses to mechanical stimulation of single lateral line pit organs. Nociceptive cells gave slowly adapting responses to destructive stimuli, such as puncture or burning of the skin. The axons of nociceptive cells had longer refractory periods and slower conduction velocities than did the axons of the other types of cell, indicating that nociceptive cells had smaller diameter axons.This work was supported by NIH grants 09661 and 09660. Adult sea lampreys were kindly provided by Mr. Patrick Manion of the U.S. Bureau of Sport Fisheries and Wildlife.  相似文献   

10.
Dynamics of habituation of synaptic responses to tactile stimulation of the snail skin was used as a criterion for defining organization of the receptive field of an escape behaviour command neurone. It was shown that every command neurone had its own specific nonhabituating area of the receptive field while the size of the field was common to all command neurones - it comprised the whole skin surface. The receptive field of a command neurone system is not homogeneous in structure. Areas corresponding to ecologically significant regions can be singled out by the maximal response amplitude and low rate of habituation.  相似文献   

11.
The olfactory epithelium (OE) of zebrafish is populated with ciliated and microvillar olfactory sensory neurons (OSNs). Whether distinct classes of odorants specifically activate either of these unique populations of OSNs is unknown. Previously we demonstrated that zebrafish OSNs could be labeled in an activity-dependent fashion by amino acid but not bile acid odorants. To determine which sensory neuron type was stimulated by amino acid odorants, we labeled OSNs using the ion channel permeant probe agmatine (AGB) and analyzed its distribution with conventional light- and electron-microscope immunocytochemical techniques. Approximately 7% of the sensory epithelium was labeled by AGB exposure alone. Following stimulation with one of the eight amino acids tested, the proportion of labeled epithelium increased from 9% for histidine to 19% for alanine; amino acid stimulated increases in labeling of 2-12% over control labeling. Only histidine failed to stimulate a significant increase in the proportion of labeled OSNs compared to control preparations. Most amino acid sensitive OSNs were located superficially in the epithelium and immuno-electron microscopy demonstrated that the labeled OSNs were predominantly microvillar. Large numbers of nanogold particles (20-60 per 1.5 microm(2)) were associated with microvillar olfactory sensory neurons (MSNs), while few such particles (<15 per 1.5 microm(2)) were observed over ciliated olfactory sensory neurons (CSNs), supporting cells (SCs) and areas without tissue, such as the lumen above the OE. Collectively, these findings indicate that microvillar sensory neurons are capable of detecting amino acid odorants.  相似文献   

12.
In the central nervous system of the terrestrial snail Helix, the gene HCS2, which encodes several neuropeptides of the CNP (command neuron peptide) family, is mostly expressed in cells related to withdrawal behavior. In the present work, we demonstrate that a small percentage (0.1%) of the sensory cells, located in the sensory pad and in the surrounding epithelial region (collar) of the anterior and posterior tentacles, is immunoreactive to antisera raised against the neuropeptides CNP2 and CNP4, encoded by the HCS2 gene. No CNP-like-immunoreactive neurons have been detected among the tentacular ganglionic interneurons. The CNP-like-immunoreactive fiber bundles enter the cerebral ganglia within the nerves of the tentacles (tentacular nerve and medial lip nerve) and innervate the metacerebral lobe, viz., the integrative brain region well-known as the target area for many cerebral ganglia nerves. The procerebral lobe, which is involved in the processing of olfactory information, is not CNP-immunoreactive. Our data suggest that the sensory cells, which contain the CNP neuropeptides, belong to a class of sensory neurons with a specific function, presumably involved in the withdrawal behavior of the snail.  相似文献   

13.
Neuronal subpopulations of dorsal root ganglion (DRG) cells in the chicken exhibit carbonic anhydrase (CA) activity. To determine whether CA activity is expressed by DRG cells maintained in in vitro cultures, dissociated DRG cells from 10-day-old chick embryos were cultured on a collagen substrate. The influence exerted by environmental factors on the enzyme expression was tested under various conditions of culture. Neuron-enriched cell cultures and mixed DRG-cell cultures (including numerous non-neuronal cells) were performed either in a defined medium or in a horse serum-supplemented medium. In all the tested conditions, subpopulations of cultured sensory neurons expressed CA activity in their cell bodies, while their neurites were rarely stained; in each case, the percentage of CA-positive neurons declined with the age of the cultures. The number and the persistence of neurons possessing CA activity as well as the intensity of the reaction were enhanced by addition of horse serum. In contrast, the expression of the neuronal CA activity was not affected by the presence of non-neuronal cells or by the rise of CO2 concentration. Thus, the appearance and disappearance of neuronal subpopulations expressing CA activity may be decisively influenced by factors contained in the horse serum. The loss of CA-positive neurons with time could result from a cell selection or from genetic repression. Analysis of the time curves does not support a preferential cell death of CA-positive neurons but suggests that the eventual conversion of CA-positive neurons into CA-negative neurons results from a loss of the enzyme activity. These results indicate that the phenotypic expression of cultured sensory neurons is dependent on defined environmental factors.  相似文献   

14.
Fast-deactivating calcium channels in chick sensory neurons   总被引:5,自引:3,他引:5       下载免费PDF全文
Whole-cell Ca and Ba currents were studied in chick dorsal root ganglion (DRG) cells kept 6-10 in culture. Voltage steps with a 15-microseconds rise time were imposed on the membrane using an improved patch-clamp circuit. Changes in membrane current could be measured 30 microseconds after the initiation of the test pulse. Currents through Ca channels were recorded under conditions that eliminate Na and K currents. Tail currents, associated with Ca channel closing, decayed in two distinct phases that were very well fitted by the sum of two exponentials. The time constants tau f and tau s were near 160 microseconds and 1.5 ms at -80 mV, 20 degrees C. The tail current components, called FD and SD (fast-deactivating and slowly deactivating), are Ca channel currents. They were greatly reduced when Mg2+ replaced all other divalent cations in the bath. The SD component inactivated almost completely as the test pulse duration was increased to 100 ms. It was suppressed when the cell was held at membrane potentials positive to -50 mV and was blocked by 100-200 microM Ni2+. This behavior indicates that the SD component was due to the closing of the low-voltage-activated (LVA) Ca channels previously described in this preparation. The FD component was fully activated with 10-ms test pulses to +20 mV at 20 degrees C, and inactivated to approximately 30% during 500-ms test pulses. It was reduced in amplitude by holding at -40 mV, but was only slightly reduced by micromolar concentrations of Ni2+. Replacement of Ca2+ with Ba2+ increased the FD tail current amplitudes by a factor of approximately 1.5. The deactivation kinetics did not change (a) as channels inactivated during progressively longer pulses or (b) when the degree of activation was varied. Further, tau f was affected neither by changing the holding potential nor by varying the test pulse amplitude. Lowering the temperature from 20 to 10 degrees C decreased tau f by a factor of 2.5. In all cases, the FD component was very well fitted by a single exponential. There was no indication of an additional tail component of significant size. Our findings indicate that the FD component is due to closing of a single class of Ca channels that coexist with the LVA Ca channel type in chick DRG neurons.  相似文献   

15.
During intracellular polarization of identified sensory neurons of the leech by square pulses of hyperpolarizing current electrical parameters of the cell membranes were determined: input resistance of the neuron Rn, time constant of the membrane , the ratio between conductance of the cell processes and conductance of the soma , the resistance of the soma membrane rs, the input resistance of the axon r a , capacitance of the membrane Cs, and resistivity of the soma membrane Rs. The results obtained by the study of various types of neurons were subjected to statistical analysis and compared with each other. Significant differences for neurons of N- and T-types were found only between the values of , Cs, and Rs (P<0.01). These parameters also had the lowest coefficients of variation. The surface area of the soma of the neurons, calculated from the capacitance of the membrane (the specific capacitance of the membrane was taken as 1 µF/cm2) was 7–10 times (N-neurons) or 4–6 times (T-neurons) greater than the surface area of a sphere of the same diameter. The resistivity of the soma membrane Rs was 35.00 k·cm2 for cells of the N-type and 19.50 k·cm2 for T-neurons. The reasons for the relative stability of this parameter compared with the input resistance of the cell (coefficient of variation 22–7 and 53–31% respectively) are discussed. The possible effects of electrical characteristics on the properties of repeated discharges in neurons of different types also are discussed.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol.7, No.3, pp.295–301, May–June, 1975.  相似文献   

16.
Summary Subpopulations of primary sensory neurons in mammalian dorsal root ganglion (DRG) exhibit carbonic anhydrase (CA) activity. To identify these subpopulations in DRG cells of mouse and chicken, the reliability of the cytochemical localization of the enzyme requires that several conditions be fulfilled:(1) Preservation of the enzyme activity in glutaraldehyde-containing fixative; (2) accessibility of the cytoenzymatic reaction throughout 20-m thick Vibratome sections; (3) retention of the reaction product in situ during OsO4 post-fixation; (4) specificity of the cytoenzymatic reaction for CA activity as corroborated by the immunocytochemical detection with antibodies anti-CA II in mouse DRG; (5) strict correlation between the CA activity and the cytological characteristics in a given subclass of neurons. On the basis of these criteria, it is concluded that the CA activity may be used as a cell marker to identify cytologically defined neuronal subpopulations and their axons in mouse DRG. In chicken DRG, CA activity is not consistently expressed in a given subclass of ganglion cells and their axons. Hence, it is assumed that the expression of CA activity by DRG cells in chicken is modulated by functional or environmental conditions.  相似文献   

17.
In this work, we have examined the mitochondrial organisation in living cultured primary dorsal root ganglion (DRG) neurons. Confocal microscopy and the mitochondrial potential-sensitive fluorescent dye 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo carbocyanine iodide (JC-1) were used to visualise intracellular structures with a high and low membrane potential. Three-dimensional reconstruction revealed a mitochondrial organisation featuring separate highly polarised mitochondria, clusters of mitochondria located mainly at the base of neurite hillocks and filamentous mitochondrial structures. Filamentous mitochondria were distributed along the cell body, especially between neurites. A functional integration between mitochondrial structures is proposed.  相似文献   

18.
EphA-ephrin signaling has recently been implicated in the establishment of motor innervation patterns, in particular in determining whether motor axons project into dorsal versus ventral nerve trunks in the limb. We investigated whether sensory axons, which grow out together with and can be guided by motor axons, are also influenced by Eph-ephrin signaling. We show that multiple EphA receptors are expressed in DRGs when limb innervation is being established, and EphA receptors are present on growth cones of both NGF-dependent (predominantly cutaneous) and NT3-dependent (predominantly proprioceptive) afferents. Both soluble and membrane-attached ephrin-A5 inhibited growth of approximately half of each population of sensory axons in vitro. On average, growth cones that collapsed in response to soluble ephrin-A5 extended more slowly than those that did not, and ephrin-A5 significantly slowed the extension of NGF-dependent growth cones that did not collapse. Finally, we show that ectopic expression of ephrin-A5 in ovo reduced arborization of cutaneous axons in skin on the limb. Together these results suggest that sensory neurons respond directly to A-class ephrins in the limb. Thus, ephrins appear to pattern sensory axon growth in two ways-both directly, and indirectly via their inhibitory effects on neighboring motor axons.  相似文献   

19.
Recent studies suggest that the capsaicin receptor [transient receptor potential vanilloid (TRPV)1] may play a role in visceral mechanosensation. To address the potential role of TRPV1 in vagal sensory neurons, we developed a new in vitro technique allowing us to determine TRPV1 expression directly in physiologically characterized gastric sensory neurons. Stomach, esophagus, and intact vagus nerve up to the central terminations were carefully dissected and placed in a perfusion chamber. Intracellular recordings were made from the soma of nodose neurons during mechanical stimulation of the stomach. Physiologically characterized neurons were labeled iontophoretically with neurobiotin and processed for immunohistochemical experiments. As shown by action potential responses triggered by stimulation of the upper thoracic vagus with a suction electrode, essentially all abdominal vagal afferents in mice conduct in the C-fiber range. Mechanosensitive gastric afferents encode stimulus intensities over a wide range without apparent saturation when punctate stimuli are used. Nine of 37 mechanosensitive vagal afferents expressed TRPV1 immunoreactivity, with 8 of the TRPV1-positive cells responding to stretch. A small number of mechanosensitive gastric vagal afferents express neurofilament heavy chains and did not respond to stretch. By maintaining the structural and functional integrity of vagal afferents up to the nodose ganglion, physiological and immunohistochemical properties of mechanosensory gastric sensory neurons can be studied in vitro. Using this novel technique, we identified TRPV1 immunoreactivity in only one-fourth of gastric mechanosensitive neurons, arguing against a major role of this ion channel in sensation of mechanical stimuli under physiological conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号