首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Evolutionary transitions among maternal, paternal, and bi‐parental care have been common in many animal groups. We use a mathematical model to examine the effect of male and female life‐history characteristics (stage‐specific maturation and mortality) on evolutionary transitions among maternal, paternal, and bi‐parental care. When males and females are relatively similar – that is, when females initially invest relatively little into eggs and both sexes have similar mortality and maturation – transitions among different patterns of care are unlikely to be strongly favored. As males and females become more different, transitions are more likely. If females initially invest heavily into eggs and this reduces their expected future reproductive success, transitions to increased maternal care (paternal → maternal, paternal → bi‐parental, bi‐parental → maternal) are favored. This effect of anisogamy (i.e., the fact that females initially invest more into each individual zygote than males) might help explain the predominance of maternal care in nature and differs from previous work that found no effect of anisogamy on the origin of different sex‐specific patterns of care from an ancestral state of no care. When male mortality is high or male egg maturation rate is low, males have reduced future reproductive potential and transitions to increased paternal care (maternal → paternal, bi‐parental → paternal, maternal → bi‐parental) are favored. Offspring need (i.e., low offspring survival in the absence of care) also plays a role in transitions to paternal care. In general, basic life‐history differences between the sexes can drive evolutionary transitions among different sex‐specific patterns of care. The finding that simple life‐history differences can alone lead to transitions among maternal and paternal care suggests that the effect of inter‐sexual life‐history differences should be considered as a baseline scenario when attempting to understand how other factors (mate availability, sex differences in the costs of competing for mates) influence the evolution of parental care.  相似文献   

3.
目的:探讨在父系HBeAg阳性的流产胚胎中,乙型肝炎病毒在绒毛中的表达。方法:募集仅父系感染乙型肝炎病毒组合,即母HBsAg(-)且父HBsAg(+)流产胚胎。按以下组合将入选对象分为4组:组1为父HBeAg(+)母HBsAb(+);组2为父HBeAg(+)母HBsAb(-);组3为父HBeAg(-)母HBsAb(+);组4为父HBeAg(-)母HBsAb(-),采用酶联免疫吸附实验(ELISA)对胎儿父、母亲血清进行乙肝抗原、抗体检测,并使用荧光定量PCR法对胚胎绒毛进行HBV DNA检测。结果:父系感染乙型肝炎病毒的142例胚胎中,仅在父系HBeAg阳性组别(1、2组)84例胚胎中发现3例绒毛HBV-DNA升高,阳性率为3.57%。其中父HBeAg(+)母HBsAb(-)组合中2例,父HBeAg(+)母HBsAb(+)组合中1例。父系HBeAg均阳性,母系HBsAb阳性与阴性组间子代绒毛HBV-DNA升高率差异无显著性(P>0.05)。结论:HBeAg阳性父亲可能更容易导致乙肝父婴垂直传播。  相似文献   

4.
5.
Reexamination of paternal age effect in Down's syndrome   总被引:2,自引:0,他引:2  
Summary The recent discovery that the extra chromosome in about 30% of cases of 47, trisomy 21 is of paternal origin has revived interest in the possibility of paternal age as a risk factor for a Down syndrome birth, independent of maternal age. Parental age distribution for 611 Down's syndrome 47,+21 cases was studied. The mean paternal age was 0.16 year greater than in the entire population of live births after controlling for maternal age. There was no evidence for a significant paternal age effect at the 0.05 level. For 242 of these Down's syndrome cases, control subjects were selected by rigidly matching in a systematic manner. Paternal age was the variable studied, with maternal age and time and place of birth controlled. There was no statistically significant association between paternal age and Down's syndrome. After adjustment for maternal age, these two studies were not consistent with an increase of paternal age in Down's syndrome.  相似文献   

6.
Genomic imprinting, the differential expression of paternal and maternal alleles, involves many chromosomal regions and plays a role in development and growth. Differential methylation of maternal and paternal alleles is a hallmark of imprinted genes, and thus methylation assays are widely used to support the identification of novel imprinted genes. Either blood or lymphoblast DNAs are most often used in these assays, even though methylation levels may change in cell culture. We undertook a systematic survey of parent-of-origin-specific methylation of chromosome 7 genes and ESTs by comparing DNA samples from cases of maternal and paternal uniparental disomy for chromosome 7 using DNA from fresh blood and lymphoblast cell lines. Our results revealed that up to 41% of genes and ESTs show parent-of-origin-specific methylation differences in lymphoblast DNA after only a short time in culture, whereas methylation differences were not seen in blood DNA. The methylation changes occurred most commonly on paternal chromosome 7, whereas alterations on maternal chromosome 7 were more infrequent and weaker. These findings indicate that methylation patterns may change significantly during cell culture in a parent-of-origin-dependent manner and suggest that methylation is maintained differently on maternal and paternal chromosomes 7.  相似文献   

7.
Maternal environments typically influence the phenotype of their offspring. However, the effect of the paternal environment or the potential for joint effects of both parental environments on offspring characters is poorly understood. Two populations of Campanula americana, a woodland herb with a variable life history, were used to determine the influence of maternal and paternal light and nutrient environments on offspring seed characters. Families were grown in the greenhouse in three levels of light or three levels of nutrients. Crosses were conducted within each environmental gradient to produce seeds with all combinations of maternal and paternal environments. On average, increasing maternal nutrient and light levels increased seed mass and decreased percentage germination. The paternal environment affected seed mass, germination time, and percentage germination. However, the influence of the paternal environment varied across maternal environments, suggesting that paternal environmental effects should be evaluated in the context of maternal environments. Significant interactions between family and the parental environments for offspring characters suggest that parental environmental effects are genetically variable. In C. americana, the timing of germination determines life history. Therefore parental environmental effects on germination timing, and genetic variation in those parental effects, suggest that parental environments may influence life history evolution in this system.  相似文献   

8.
Paternal kin discrimination in wild baboons.   总被引:10,自引:0,他引:10  
Mammals commonly avoid mating with maternal kin, probably as a result of selection for inbreeding avoidance. Mating with paternal kin should be selected against for the same reason. However, identifying paternal kin may be more difficult than identifying maternal kin in species where the mother mates with more than one male. Selection should nonetheless favour a mechanism of paternal kin recognition that allows the same level of discrimination among paternal as among maternal kin, but the hypothesis that paternal kin avoid each other as mates is largely untested in large mammals such as primates. Here I report that among wild baboons, Papio cynocephalus, paternal siblings exhibited lower levels of affiliative and sexual behaviour during sexual consortships than non-kin, although paternal siblings were not significantly less likely to consort than non-kin. I also examined age proximity as a possible social cue of paternal relatedness, because age cohorts are likely to be paternal sibships. Pairs born within two years of each other were less likely to engage in sexual consortships than pairs born at greater intervals, and were less affiliative and sexual when they did consort. Age proximity may thus be an important social cue for paternal relatedness, and phenotype matching based on shared paternal traits may play a role as well.  相似文献   

9.
Theories on the evolution of the angiosperm seed disagree as to the effects of different plant tissues on embryo growth. To examine the relative contributions of maternal and paternal genes on embryo growth, we conducted controlled crosses in the greenhouse with wild radish plants (Raphanus sativus), looked for maternal, paternal, and interaction effects on embryo development, and compared the performance of embryos within fruits and in embryo culture. Maternal plant identity affected fruit set, seeds per fruit, embryo developmental stage, and mean seed weight. In embryo culture, maternal effects were found for cotyledon size and embryo weight. Paternal effects were fewer or smaller in magnitude than maternal effects. The identity of the pollen donor affected embryo developmental stage and mean seed weight. In culture, paternal effects were detected for cotyledon size and embryo weight. Our results demonstrate that both maternal and paternal elements affect embryo growth. The fact that maternal effects are greater than paternal effects on embryo development in culture may result from cytoplasmic elements or maternal nuclear genes. Embryo performance in vivo compared to that in vitro varied among maternal plants. The interaction between an embryo and its endosperm and maternal tissues may be either positive or negative, depending upon the maternal plant and the embryo's developmental stage.  相似文献   

10.
The hairpin-tail (Thp) deletion in chromosome 17 is lethal when it is inherited from the mother, whereas heterozygotes with Thp deletion that is paternal in origin are viable. The lethal effect of maternal Thp is due to a deficiency of the Tme gene that is located in the Thp-deleted region. In this article we describe analysis of the viability of mice with tertiary trisomy of chromosome 17, Ts(17(16]43H, with different doses of the paternal and maternal Tme alleles. We demonstrate that the presence of an additional copy of the region with the Tme gene in the female gamete entirely compensates maternal Thp lethality. We failed to compensate the absence of the Tme gene from the chromosome of maternal derivation by two doses of Tme derived from the father. Thus evidence was obtained indicating that there are significant differences between the activities of the paternal and maternal alleles of the Tme gene due to chromosome imprinting.  相似文献   

11.
In female mammalian cells, one of the two X chromosomes is inactivated to compensate for gene-dose effects, which would be otherwise doubled compared with that in male cells. In somatic lineages in mice, the inactive X chromosome can be of either paternal or maternal origin, whereas the paternal X chromosome is specifically inactivated in placental tissue. In human somatic cells, X inactivation is mainly random, but both random and preferential paternal X inactivation have been reported in placental tissue. To shed more light on this issue, we used PCR to study the methylation status of the polymorphic androgen-receptor gene in full-term human female placentas. The sites investigated are specifically methylated on the inactive X chromosome. No methylation was found in microdissected stromal tissue, whether from placenta or umbilical cord. Of nine placentas for which two closely apposed samples were studied, X inactivation was preferentially maternal in three, was preferentially paternal in one, and was heterogeneous in the remaining five. Detailed investigation of two additional placentas demonstrated regions with balanced (1:1 ratio) preferentially maternal and preferentially paternal X inactivation. No differences in ratio were observed in samples microdissected to separate trophoblast and stromal tissues. We conclude that methylation of the androgen receptor in human full-term placenta is specific for trophoblastic cells and that the X chromosome can be of either paternal or maternal origin.  相似文献   

12.
Zygotes require two accurate sets of parental chromosomes, one each from the mother and the father, to undergo normal embryogenesis. However, upon egg–sperm fusion in vertebrates, the zygote has three sets of chromosomes, one from the sperm and two from the egg. The zygote therefore eliminates one set of maternal chromosomes (but not the paternal chromosomes) into the polar body through meiosis, but how the paternal chromosomes are protected from maternal meiosis has been unclear. Here we report that RanGTP and F-actin dynamics prevent egg–sperm fusion in proximity to maternal chromosomes. RanGTP prevents the localization of Juno and CD9, egg membrane proteins that mediate sperm fusion, at the cell surface in proximity to maternal chromosomes. Following egg–sperm fusion, F-actin keeps paternal chromosomes away from maternal chromosomes. Disruption of these mechanisms causes the elimination of paternal chromosomes during maternal meiosis. This study reveals a novel critical mechanism that prevents aneuploidy in zygotes.  相似文献   

13.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

14.
Hoolahan AH  Blok VC  Gibson T  Dowton M 《Genetica》2011,139(11-12):1509-1519
Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4?kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40?% of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.  相似文献   

15.
The evolution of X-linked genomic imprinting   总被引:1,自引:0,他引:1  
Iwasa Y  Pomiankowski A 《Genetics》2001,158(4):1801-1809
We develop a quantitative genetic model to investigate the evolution of X-imprinting. The model compares two forces that select for X-imprinting: genomic conflict caused by polygamy and sex-specific selection. Genomic conflict can only explain small reductions in maternal X gene expression and cannot explain silencing of the maternal X. In contrast, sex-specific selection can cause extreme differences in gene expression, in either direction (lowered maternal or paternal gene expression), even to the point of gene silencing of either the maternal or paternal copy. These conclusions assume that the Y chromosome lacks genetic activity. The presence of an active Y homologue makes imprinting resemble the autosomal pattern, with active paternal alleles (X- and Y-linked) and silenced maternal alleles. This outcome is likely to be restricted as Y-linked alleles are subject to the accumulation of deleterious mutations. Experimental evidence concerning X-imprinting in mouse and human is interpreted in the light of these predictions and is shown to be far more easily explained by sex-specific selection.  相似文献   

16.
The relationship between maternal and paternal affection, reported in adulthood, and personality was examined using a genetically sensitive research design comparing differences between monozygotic twins. Using life history theory as a framework, it was predicted that differences in maternal and paternal affection would be predictive of differences in personality such that the twin reporting greater maternal and paternal affection would also report a personality profile reflective of a slow life history strategy. Specifically, it was predicted that the twin that reported greater maternal and paternal affection would also score high on the meta-traits of plasticity, stability, and the general factor of personality (GFP). The results supported the hypotheses, with most variance accounted for by the GFP. Additional results suggest that differences in paternal affection exhibit a stronger effect and that stability and plasticity may provide unique information about the association between differences in parental affection and differences in personality. Attachment and parental investment theories offer possible explanations for the findings, although alternative explanations are also proffered. It may also be beneficial for future research using a monozygotic twin difference approach to utilize biometric measures of life history strategy.  相似文献   

17.
Sex‐allocation theory predicts that females in good condition should preferentially produce offspring of the sex that benefits the most from an increase in maternal investment. However, it is generally assumed that the condition of the sire has little effect on progeny sex ratio, particularly in species that lack parental care. We used a controlled breeding experiment and molecular paternity analyses to examine the effects of both maternal and paternal condition on progeny sex ratio and progeny fitness in the brown anole (Anolis sagrei), a polygynous lizard that lacks parental care. Contrary to the predictions of sex‐allocation theory, we found no relationship between maternal condition and progeny sex ratio. By contrast, progeny sex ratio shifted dramatically from female‐biased to male‐biased as paternal condition increased. This pattern was driven entirely by an increase in the production of sons as paternal condition improved. Despite strong natural selection favoring large size and high condition in both sons and daughters, we found no evidence that progeny survival was related to paternal condition. Our results emphasize the importance of considering the paternal phenotype in studies of sex allocation and highlight the need for further research into the pathways that link paternal condition to progeny fitness.  相似文献   

18.
The composition in segregated haploid sets of paternal and maternal chromosomes has been studied in order to verify whether their composition is uniparental of mixed, fixed or variable. Primary cultures where prepared using kidneys from hybrids of strains of Mus musculus in which the parental chromosomes are distinguishable; the maternal set consists of 20 teleocentric chromosomes, the paternal set of 9 metacentric chromosomes, derived by Robertsonian fusion and 2 telocentrics. Applying Seabright's banding technique, an analysis of segregated haploid and diploid cells, which have originated spontaneously through polyploidisation-segregation processes was carried out. It was concluded that the haploid sets have a variable composition of paternal and maternal chromosomes.  相似文献   

19.
If there is a paternal-age effect for 47, +21, it would appear most likely to be present primarily, if not exclusively, in cases in which the extra chromosome is of paternal origin. To search for such an effect, data were reviewed from seven series reporting at least four cases of 47, +21 of paternal origin. The mean of the paternal age-maternal-age difference of such cases (dp) in each series was compared with the mean of the paternal-age differences of cases in the same series that were of maternal origin (dm). If the difference between these (dp - dm or delta) is greater than zero, then this would imply a positive paternal-age effect among cases of paternal origin, at least compared to those of maternal origin. In the seven series, the values of delta ranged from -2.2 years to +3.4 years, and there was no evidence in these comparisons for any consistent trend. A second analysis controlled for any effect of maternal-age variation upon this difference. Each case of paternal origin was matched with a case of maternal origin in the same series that was of the same maternal age. Of 60 cases of paternal origin, exact matches were found for 38. In these 38, the mean value of the difference in parental ages, dp - dm or delta, was negative, about -1.1 (+/- 5.1 years). The difference was highest for the nine cases of paternal origin in which the extra chromosome resulted from presumptive second-division non-disjunction, -1.8 (+/- 3.8 years).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adult female cercopithecines have long been known to bias their social behaviour towards close maternal kin. However, much less is understood about the behaviour of paternal kin, especially in wild populations. Here, we show that wild adult female baboons bias their affiliative behaviour towards their adult paternal half-sisters in the same manner and to the same extent that they bias their behaviour towards adult maternal half-sisters. Females appear to rely heavily on social familiarity as a means of biasing their behaviour towards paternal half-sisters, but may use phenotype matching as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号