首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that “resting-state” fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated by the autism-related comparisons.  相似文献   

2.
Pinel P  Piazza M  Le Bihan D  Dehaene S 《Neuron》2004,41(6):983-993
How are comparative judgments performed in the human brain? We scanned subjects with fMRI while they compared stimuli for size, luminance, or number. Regions involved in comparative judgments were identified using three criteria: task-related activation, presence of a distance effect, and interference of one dimension onto the other. We observed considerable overlap in the neural substrates of the three comparison tasks. Interestingly, the amount of overlap predicted the amount of cross-dimensional interference: in both behavior and fMRI, number interfered with size, and size with luminance, but number did not interfere with luminance. The results suggest that during comparative judgments, the relevant continuous quantities are represented in distributed and overlapping neural populations, with number and size engaging a common parietal spatial code, while size and luminance engage shared occipito-temporal perceptual representations.  相似文献   

3.
Functional magnetic resonance data acquired in a task-absent condition (“resting state”) require new data analysis techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many other nodes that are themselves central within the network. Google''s PageRank algorithm is a variant of eigenvector centrality. Thus far, other centrality measures - in particular “betweenness centrality” - have been applied to fMRI data using a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool for capturing intrinsic neural architecture on a voxel-wise level.  相似文献   

4.

Background

Functional magnetic resonance imaging (fMRI) continues to develop as a clinical tool for patients with brain cancer, offering data that may directly influence surgical decisions. Unfortunately, routine integration of preoperative fMRI has been limited by concerns about reliability. Many pertinent studies have been undertaken involving healthy controls, but work involving brain tumor patients has been limited. To develop fMRI fully as a clinical tool, it will be critical to examine these reliability issues among patients with brain tumors. The present work is the first to extensively characterize differences in activation map quality between brain tumor patients and healthy controls, including the effects of tumor grade and the chosen behavioral testing paradigm on reliability outcomes.

Method

Test-retest data were collected for a group of low-grade (n = 6) and high-grade glioma (n = 6) patients, and for matched healthy controls (n = 12), who performed motor and language tasks during a single fMRI session. Reliability was characterized by the spatial overlap and displacement of brain activity clusters, BOLD signal stability, and the laterality index. Significance testing was performed to assess differences in reliability between the patients and controls, and low-grade and high-grade patients; as well as between different fMRI testing paradigms.

Results

There were few significant differences in fMRI reliability measures between patients and controls. Reliability was significantly lower when comparing high-grade tumor patients to controls, or to low-grade tumor patients. The motor task produced more reliable activation patterns than the language tasks, as did the rhyming task in comparison to the phonemic fluency task.

Conclusion

In low-grade glioma patients, fMRI data are as reliable as healthy control subjects. For high-grade glioma patients, further investigation is required to determine the underlying causes of reduced reliability. To maximize reliability outcomes, testing paradigms should be carefully selected to generate robust activation patterns.  相似文献   

5.
Functional magnetic resonance imaging (fMRI) can provide maps of brain activation with millimeter spatial resolution but is limited in its temporal resolution to the order of seconds. Here, we describe a technique that combines structural and functional MRI with magnetoencephalography (MEG) to obtain spatiotemporal maps of human brain activity with millisecond temporal resolution. This new technique was used to obtain dynamic statistical parametric maps of cortical activity during semantic processing of visually presented words. An initial wave of activity was found to spread rapidly from occipital visual cortex to temporal, parietal, and frontal areas within 185 ms, with a high degree of temporal overlap between different areas. Repetition effects were observed in many of the same areas following this initial wave of activation, providing evidence for the involvement of feedback mechanisms in repetition priming.  相似文献   

6.
Statistical Parametric Mapping (SPM) is the dominant paradigm for mass-univariate analysis of neuroimaging data. More recently, a Bayesian approach termed Posterior Probability Mapping (PPM) has been proposed as an alternative. PPM offers two advantages: (i) inferences can be made about effect size thus lending a precise physiological meaning to activated regions, (ii) regions can be declared inactive. This latter facility is most parsimoniously provided by PPMs based on Bayesian model comparisons. To date these comparisons have been implemented by an Independent Model Optimization (IMO) procedure which separately fits null and alternative models. This paper proposes a more computationally efficient procedure based on Savage-Dickey approximations to the Bayes factor, and Taylor-series approximations to the voxel-wise posterior covariance matrices. Simulations show the accuracy of this Savage-Dickey-Taylor (SDT) method to be comparable to that of IMO. Results on fMRI data show excellent agreement between SDT and IMO for second-level models, and reasonable agreement for first-level models. This Savage-Dickey test is a Bayesian analogue of the classical SPM-F and allows users to implement model comparison in a truly interactive manner.  相似文献   

7.
Summary The aim of this article is to develop a spatial model for multi‐subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi‐subject data, some work on spatial modeling of single‐subject data, and some recent work on spatial modeling of multi‐subject data. However, there has been no work on spatial models that explicitly account for inter‐subject variability in activation locations. In this article, we use the idea of activation centers and model the inter‐subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical framework which allows us to draw inferences at all levels: the population level, the individual level, and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question that is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass‐univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data.  相似文献   

8.
Self-awareness impairments are frequently mentioned as being responsible for the positive symptoms of schizophrenia spectrum disorders. However, the neural correlates of self-other distinction in this pathology are still poorly understood. In the present study, we developed an fMRI procedure in order to examine self-other distinction during speech exchange situations. Fifteen subjects with schizophrenia were compared to 15 matched controls. The results revealed an increased overlap between the self and non-self cortical maps in schizophrenia, in the medial frontal and medial parietal cortices, as well as in the right middle temporal cortex and the right inferior parietal lobule. Moreover, these neural structures showed less BOLD amplitude differences between the self and non-self conditions in the patients. These activation patterns were judged to be independent of mirror-like properties, familiarity or body-ownership processing. Significantly, the increase in the right IPL signal was found to correlate positively with the severity of first-rank symptoms, and thus could be considered a "state-marker" of schizophrenia, whereas temporal and medial parieto-frontal differences appear to be "trait-markers" of the disease. Such an increased overlap between self and non-self cortical maps might be considered a neuro-physiological signature of the well established self-awareness impairment in people suffering from schizophrenia.  相似文献   

9.
FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used.  相似文献   

10.
J Pajula  JP Kauppi  J Tohka 《PloS one》2012,7(8):e41196
Within functional magnetic resonance imaging (fMRI), the use of the traditional general linear model (GLM) based analysis methods is often restricted to strictly controlled research setups requiring a parametric activation model. Instead, Inter-Subject Correlation (ISC) method is based on voxel-wise correlation between the time series of the subjects, which makes it completely non-parametric and thus suitable for naturalistic stimulus paradigms such as movie watching. In this study, we compared an ISC based analysis results with those of a GLM based in five distinct controlled research setups. We used International Consortium for Brain Mapping functional reference battery (FRB) fMRI data available from the Laboratory of Neuro Imaging image data archive. The selected data included measurements from 37 right-handed subjects, who all had performed the same five tasks from FRB. The GLM was expected to locate activations accurately in FRB data and thus provide good grounds for investigating relationship between ISC and stimulus induced fMRI activation. The statistical maps of ISC and GLM were compared with two measures. The first measure was the Pearson's correlation between the non-thresholded ISC test-statistics and absolute values of the GLM Z-statistics. The average correlation value over five tasks was 0.74. The second was the Dice index between the activation regions of the methods. The average Dice value over the tasks and three threshold levels was 0.73. The results of this study indicated how the data driven ISC analysis found the same foci as the model-based GLM analysis. The agreement of the results is highly interesting, because ISC is applicable in situations where GLM is not suitable, for example, when analyzing data from a naturalistic stimuli experiment.  相似文献   

11.
Neuroimaging activation maps typically color voxels to indicate whether the blood oxygen level-dependent (BOLD) signals measured among two or more experimental conditions differ significantly at that location. This data presentation, however, omits information critical for interpretation of experimental results. First, no information is represented about trends at voxels that do not pass the statistical test. Second, no information is given about the range of probable effect sizes at voxels that do pass the statistical test. This leads to a fundamental error in interpreting activation maps by naïve viewers, where it is assumed that colored, “active” voxels are reliably different from uncolored “inactive” voxels. In other domains, confidence intervals have been added to data graphics to reduce such errors. Here, we first document the prevalence of the fundamental error of interpretation, and then present a method for solving it by depicting confidence intervals in fMRI activation maps. Presenting images where the bounds of confidence intervals at each voxel are coded as color allows readers to visually test for differences between “active” and “inactive” voxels, and permits for more proper interpretation of neuroimaging data. Our specific graphical methods are intended as initial proposals to spur broader discussion of how to present confidence intervals for fMRI data.  相似文献   

12.
Phospholipase C catalyzed hydrolysis of dimyristoyl phosphatidylcholine (DMPC) in phospholipid-bile salt mixed micelles was studied with particular attention on the relationship between interfacial enzyme activity and the physicochemical properties of substrate aggregates. Steady state kinetics is observed and it is argued that conditions for steady state exist because the enzyme encounters a steady supply of substrate by hopping between micelles at a rate faster than the chemical reaction rate. An existing kinetic model is reformulated to a more usable form. This presents a new approach to treating the kinetic data and allows extraction of the kinetic parameters of the model from the activity dependence on micellar lipid substrate surface concentration. The kinetic parameters were found to depend on the physicochemical properties of substrate aggregates, but remain constant over a range of lipid and bile salt concentrations. The substrate aggregates were characterized by time-resolved fluorescence quenching (TRFQ). The activity values and the micelle sizes group into two sets: (i) larger micelles for bile salt/lipid 5 with lower activity and longer steady state ( approximately 10 min). At least two sets of parameters, for bile salt/lipid 5, characterize the kinetics. Higher enzyme-micelle dissociation constant and lower catalytic rate are found for the group of smaller micelles. An explanation supporting our finding is that as micelles become smaller the overlap area for enzyme-micelle binding decreases, leading to weaker binding. Consequently the enzyme dissociation constant increases. Extension of the present approach to other phospholipases and substrates to establish its generality and correlation between micelle size and the catalytic rate are areas for future investigations.  相似文献   

13.
14.
The elucidation of the complex machinery used by the human brain to segregate and integrate information while performing high cognitive functions is a subject of imminent future consequences. The most significant contributions to date in this field, known as cognitive neuroscience, have been achieved by using innovative neuroimaging techniques, such as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), which measure variations in both the time and the space of some interpretable physical magnitudes. Extraordinary maps of cerebral activation involving function-restricted brain areas, as well as graphs of the functional connectivity between them, have been obtained from EEG and fMRI data by solving some spatio-temporal inverse problems, which constitutes a top-down approach. However, in many cases, a natural bridge between these maps/graphs and the causal physiological processes is lacking, leading to some misunderstandings in their interpretation. Recent advances in the comprehension of the underlying physiological mechanisms associated with different cerebral scales have provided researchers with an excellent scenario to develop sophisticated biophysical models that permit an integration of these neuroimage modalities, which must share a common aetiology. This paper proposes a bottom-up approach, involving physiological parameters in a specific mesoscopic dynamic equations system. Further observation equations encapsulating the relationship between the mesostates and the EEG/fMRI data are obtained on the basis of the physical foundations of these techniques. A methodology for the estimation of parameters from fused EEG/fMRI data is also presented. In this context, the concepts of activation and effective connectivity are carefully revised. This new approach permits us to examine and discuss some future prospects for the integration of multimodal neuroimages.  相似文献   

15.
We examined the hypothesis that a main benefit of group‐living in the hystricognath rodent, Octodon degus (common degu), is to decrease individual risk of predation. During a first series of field observations, we contrasted group size of degus when using covered microhabitats with that of degus using exposed patches. During a second set of field observations, we assessed how distance to detection and to escape by degus varied with group size upon the approach of a potential human predator. Degus in exposed patches formed larger groups than degus in covered microhabitats. After excluding the influence of nearest burrow to focal subjects, we found that degus of larger groups detected an approaching human predator at a greater distance than degus of smaller groups. Likewise, degus of larger groups escaped to nearby burrows at a greater distance from the approaching predator than degus of smaller groups. All these pieces of evidence support the predatory risk hypothesis according to which group‐living in degus functions to reduce the risk of predation.  相似文献   

16.

Background

A pilot study has shown that real-time fMRI (rtfMRI) neurofeedback could be an alternative approach for chronic pain treatment. Considering the relative small sample of patients recruited and not strictly controlled condition, it is desirable to perform a replication as well as a double-blinded randomized study with a different control condition in chronic pain patients. Here we conducted a rtfMRI neurofeedback study in a subgroup of pain patients – patients with postherpetic neuralgia (PHN) and used a different sham neurofeedback control. We explored the feasibility of self-regulation of the rostral anterior cingulate cortex (rACC) activation in patients with PHN through rtfMRI neurofeedback and regulation of pain perception.

Methods

Sixteen patients (46–71 years) with PHN were randomly allocated to a experimental group (n = 8) or a control group (n = 8). 2 patients in the control group were excluded for large head motion. The experimental group was given true feedback information from their rACC whereas the control group was given sham feedback information from their posterior cingulate cortex (PCC). All subjects were instructed to perform an imagery task to increase and decrease activation within the target region using rtfMRI neurofeedback.

Results

Online analysis showed 6/8 patients in the experimental group were able to increase and decrease the blood oxygen level dependent (BOLD) fMRI signal magnitude during intermittent feedback training. However, this modulation effect was not observed in the control group. Offline analysis showed that the percentage of BOLD signal change of the target region between the last and first training in the experimental group was significantly different from the control group’s and was also significantly different than 0. The changes of pain perception reflected by numerical rating scale (NRS) in the experimental group were significantly different from the control group. However, there existed no significant correlations between BOLD signal change and NRS change.

Conclusion

Patients with PHN could learn to voluntarily control over activation in rACC through rtfMRI neurofeedback and alter their pain perception level. The present study may provide new evidence that rtfMRI neurofeedback training may be a supplemental approach for chronic clinical pain management.  相似文献   

17.
This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots.  相似文献   

18.
Data-driven fMRI analysis techniques include independent component analysis (ICA) and different types of clustering in the temporal domain. Since each of these methods has its particular strengths, it is natural to look for an approach that unifies Kohonen's self-organizing map and ICA. This is given by the topographic independent component analysis. While achieved by a slight modification of the ICA model, it can be at the same time used to define a topographic order (clusters) between the components, and thus has the usual computational advantages associated with topographic maps. In this contribution, we can show that when applied to fMRI analysis it outperforms FastICA.  相似文献   

19.

Introduction

Neuropsychiatric manifestations are common in childhood-onset systemic lupus erythematosus (cSLE) and often include neurocognitive dysfunction (NCD). Functional magnetic resonance imaging (fMRI) can measure brain activation during tasks that invoke domains of cognitive function impaired by cSLE. This study investigates specific changes in brain function attributable to NCD in cSLE that have potential to serve as imaging biomarkers.

Methods

Formal neuropsychological testing was done to measure cognitive ability and to identify NCD. Participants performed fMRI tasks probing three cognitive domains impacted by cSLE: visuoconstructional ability (VCA), working memory, and attention. Imaging data, collected on 3-Tesla scanners, included a high-resolution T1-weighted anatomic reference image followed by a T2*-weighted whole-brain echo planar image series for each fMRI task. Brain activation using blood oxygenation level-dependent contrast was compared between cSLE patients with NCD (NCD-group, n = 7) vs. without NCD (noNCD-group, n = 14) using voxel-wise and region of interest-based analyses. The relationship of brain activation during fMRI tasks and performance in formal neuropsychological testing was assessed.

Results

Greater brain activation was observed in the noNCD-group vs. NCD-group during VCA and working memory fMRI tasks. Conversely, compared to the noNCD-group, the NCD-group showed more brain activation during the attention fMRI task. In region of interest analysis, brain activity during VCA and working memory fMRI tasks was positively associated with the participants'' neuropsychological test performance. In contrast, brain activation during the attention fMRI task was negatively correlated with neuropsychological test performance. While the NCD group performed worse than the noNCD group during VCA and working memory tasks, the attention task was performed equally well by both groups.

Conclusions

NCD in patients with cSLE is characterized by differential activation of functional neuronal networks during fMRI tasks probing working memory, VCA, and attention. Results suggest a compensatory mechanism allows maintenance of attentional performance under NCD. This mechanism appears to break down for the VCA and working memory challenges presented in this study. The observation that neuronal network activation is related to the formal neuropsychological testing performance makes fMRI a candidate imaging biomarker for cSLE-associated NCD.  相似文献   

20.
The identification of effective connectivity from time-series data such as electroencephalogram (EEG) or time-resolved function magnetic resonance imaging (fMRI) recordings is an important problem in brain imaging. One commonly used approach to inference effective connectivity is based on vector autoregressive models and the concept of Granger causality. However, this probabilistic concept of causality can lead to spurious causalities in the presence of latent variables. Recently, graphical models have been used to discuss problems of causal inference for multivariate data. In this paper, we extend these concepts to the case of time-series and present a graphical approach for discussing Granger-causal relationships among multiple time-series. In particular, we propose a new graphical representation that allows the characterization of spurious causality and, thus, can be used to investigate spurious causality. The method is demonstrated with concurrent EEG and fMRI recordings which are used to investigate the interrelations between the alpha rhythm in the EEG and blood oxygenation level dependent (BOLD) responses in the fMRI. The results confirm previous findings on the location of the source of the EEG alpha rhythm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号