首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat selection in heterogeneous environments is assumed to allow diversification. Wide‐ranging species like pelagic seabirds present a paradox, in that their diversity appears difficult to reconcile with a frequent lack of geographical isolation between populations. We studied the foraging strategies of three closely related species of greater albatrosses, wandering albatross, Diomedea exulans, Amsterdam albatrosses D. amsterdamensis and royal albatross, D. epomophora, in relation to environmental heterogeneity at coarse‐grained and fine‐grained scales. During the incubation period the three species foraged at long distances from their colonies. We observed significant differences between the species in the duration of foraging trips and the distance travelled per day. There were significant differences in preference for habitat types in relation to bathymetric features, and in chlorophyll a concentrations in the waters traversed. Royal albatross preferred shallower waters (<1500 m depth), which were rich in chlorophyll (>0.5 mg/m3), while the other species spent on average 80% of their time in waters deeper than this, where chlorophyll levels were lower. Wandering albatrosses foraged in colder waters than Amsterdam albatrosses. Patterns of activity divided the species into two groups: those exploiting oceanic habitats (wandering and Amsterdam albatrosses) spent high proportions of time on the water (49%), and had on average 1.35 takeoffs and landings per hour, while royal albatross, which foraged mainly over neritic waters spent only 35% of their time sitting on the water, and made on average 2.6 takeoff per hour. Further, royal albatross showed a similar pattern of activity during all periods of the day, while wandering and Amsterdam albatrosses were mostly inactive during the night. We link these differences in activity to prey patch availability in two contrasting habitats – continental shelf areas compared to open ocean habitats. The divergent styles of foraging observed in this study suggest that these closely‐related and wide‐ranging species could effectively co‐exist by dividing the resources available to them by different modes of exploitation.  相似文献   

2.
1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting search patterns that are approximated as optimal in response to encountered changes in prey type and abundance, and across diverse marine habitats, from the surf zone to the deep ocean. 5. Our results provide some support for the LFF hypothesis. However, it is possible that the observed Lévy patterns of white sharks may not arise from an adaptive behaviour but could be an emergent property arising from simple, straight-line movements between complex (e.g. fractal) distributions of prey. Experimental studies are needed in vertebrates to test for the presence of Lévy behaviour patterns in the absence of complex prey distributions.  相似文献   

3.
Spatial modelling studies stress the importance of predicting future species distribution in changing environments, but it is also important to establish historical distribution ranges of species to provide baseline conditions for understanding distribution shifts. We focused on pelagic ecosystems, the largest ecosystem on Earth. Based on boosting algorithms, we reconstructed the foraging patterns of an oceanic predator, wandering albatross Diomedea exulans, in the highly dynamic Southern Ocean over the last half century. To access the unobserved past oceanographic conditions, we used simulations of the OPA‐PISCES oceanic model for the 1958–2001 period. Firstly, we validated the simulated oceanographic variables (sea surface temperature and height, wind speed and chlorophyll a) for the 1998–2001 period with remotely sensed oceanographic data, which were highly correlated, except chlorophyll a. Secondly, we developed two habitat models (based on simulated and observed oceanographic variables) describing the foraging probability of albatrosses. We detected no statistically significant differences between the two models and predictions of both models matched the observed distribution patterns reasonably. Finally, we projected the most likely historical key pelagic habitats of albatross for the 1958 to 2001 period and characterised recurrent, occasional and unfavourable foraging areas in a decadal basis based on average predictions and their standard deviations. Our findings 1) provided a historical baseline (1958–1968) of recurrent, occasional and unfavourable foraging habitats, 2) evidenced a progressive habitat shift the following decades driven by a propagation of sea surface height from SE South Africa towards Antarctica from 1958 to 2001 and 3) measured habitat change rates of wandering albatross over the last half century. To our knowledge, our study provides the first quantitative long‐term assessment of the spatial response of a marine top predator to changing pelagic habitats of the Southern Ocean and highlighted the oceanographic mechanisms involved, offering new insights on future effects of climate change on the pelagic realm.  相似文献   

4.
Antarctic procellariiform seabirds forage over vast stretches of open ocean in search of patchily distributed prey resources. These seabirds are unique in that most species have anatomically well-developed olfactory systems and are thought to have an excellent sense of smell. Results from controlled experiments performed at sea near South Georgia Island in the South Atlantic indicate that different species of procellariiforms are sensitive to a variety of scented compounds associated with their primary prey. These include krill-related odors (pyrazines and trimethylamine) as well as odors more closely associated with phytoplankton (dimethyl sulfide, DMS). Data collected in the context of global climatic regulation suggest that at least one of these odors (DMS) tends to be associated with predictable bathymetry, including upwelling zones and seamounts. Such odor features are not ephemeral but can be present for days or weeks. I suggest that procellariiforms foraging over vast distances may be able to recognize these features reflected in the olfactory landscape over the ocean. On the large scale, such features may aid seabirds in navigation or in locating profitable foraging grounds. Once in a profitable foraging area, procellariiforms may use olfactory cues on a small scale to assist them in locating prey patches.  相似文献   

5.
Many spatially complex environments are fractal, and consumers in these environments face scale-dependent trade-offs between encountering high densities of small resource patches versus low densities of large resource patches. I address the effects of these trade-offs on foraging by incorporating scale-dependent encounter of resources in fractal landscapes into classical optimal foraging theory. This model is then used to predict optimal scales of perception (foraging scale) and patch choice in response to spatial features of landscapes. The model predicts that, for a given density of resources, landscapes with greater extent and fractal dimension and that contain patchy (low fractal dimension) resources favour large foraging scales and specialization on a small proportion of resource patches. Fragmented (low fractal dimension) landscapes of small extent with dispersed (high fractal dimension) resources favour smaller foraging scales and generalists that use a large proportion of available resource patches. These predictions synthesize the results of other spatially explicit consumer–resource models into a simple framework and agree reasonably well with results of several empirical studies. This study thus places optimal foraging theory in a spatial context and suggests evolutionary mechanisms of consumers' responses to important spatial phenomena (e.g. habitat fragmentation, resource aggregation). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Synopsis Spatially-explicit modeling of fish growth rate potential is a relatively new approach that uses physical and biological properties of aquatic habitats to map spatial patterns of fish growth rate potential. Recent applications of spatially-explicit models have used an arbitrary spatial scale and have assumed a fixed foraging efficiency. We evaluated the effects of spatial scale, predator foraging efficiency (combined probabilities of prey recognition, attack, capture, and ingestion), and predator spatial distribution on estimates of mean growth rate potential of chinook salmon,Oncorhynchus tshawytscha. We used actual data on prey densities and water temperatures taken from Lake Ontario during the summer, as well as, simulated data assuming binomial distribution of prey. Results show that a predator can compensate for low foraging efficiency by inhabiting the most profitable environments (regions of high growth rate potential). Differences exist in predictions of growth rate potential across spatial scales of observation and a single scale may not be adequate for interpreting model results across seasons. Continued refinements of this modeling approach must focus on the assumptions of stationary distributions of predator and prey populations and predator foraging tactics.  相似文献   

7.
Generalist seabirds forage on a variety of prey items providing the opportunity to monitor diverse aquatic fauna simultaneously. For example, the coupling of prey consumption rates and movement patterns of generalist seabirds might be used to create three‐dimensional prey distribution maps (‘preyscapes’) for multiple prey species in the same region. However, the complex interaction between generalist seabird foraging behaviour and the various prey types clouds the interpretation of such preyscapes, and the mechanisms underlying prey selection need to be understood before such an application can be realized. Central place foraging theory provides a theoretical model for understanding such selectivity by predicting that larger prey items should be 1) selected farther from the colony and 2) for chick‐feeding compared with self‐feeding, but these predictions remain untested on most seabird species. Furthermore, rarely do we know how foraging features such as handling time, capture methods or choice of foraging location varies among prey types. We used three types of animal‐borne biologgers (camera loggers, GPS and depth‐loggers) to examine how a generalist Arctic seabird, the thick‐billed murre Uria lomvia, selects and captures their prey throughout the breeding season. Murres captured small prey at all phases of a dive, including while descending and ascending, but captured large fish mostly while ascending, with considerably longer handling times. Birds captured larger prey and dove deeper during chick‐rearing. As central place foraging theory predicted, birds travelling further also brought bigger prey items for their chick. The location of a dive (distance from colony and distance to shore) best explained which prey type was the most likely to get caught in a dive, and we created a preyscape surrounding our study colony. We discuss how these findings might aid the use of generalist seabirds as bioindicators.  相似文献   

8.
Patterns of seabird species' distributions differ between theAntarctic and the Arctic. In the Antarctic, distributions areannular or latitudinal, with strong similarities in speciescomposition of seabird communities in all ocean basins at agiven latitude. In the Arctic, communities are arranged meridionally,and show strong differences between ocean basins and, at a givenlatitude, between sides of ocean basins. These differences betweenthe seabird communi ies in the Northern Hemisphere and the SouthernHemisphere reflect differences in the patterns of flow of majorocean current systems. At smaller spatial scales, in both hemispheresthe species composition of seabird communities is sensitiveto changes in watermass characteristics. The distribution of avian biomass is affected by both physicaland biological features of the ocean. In the Antarctic, muchseabird foraging is over deep water, and withinseason, small-scalepatchiness in prey abundance and availability in ice-free watersis likely to be controlledprimarily by the behavior of the prey,rather than by physical features. Thus, prey availability maybe unpredictable in time and space. In contrast, in the NorthernHemisphere, most seabirdforaging is concentrated over shallowcontinental shelves, where currents interact with bathymetryto produce predictable physical features capable of concentratingprey or making prey more easily harvested by seabirds. Ice cover appears to be the most important physical featurein the Antarctic. An entire community of birds is specializedto use prey taken near the ice edge. These prey consist of avariety of species, some of which are normally found much deeperin the water than the birds takingthem can dive. The open-waterportion of the marginal ice zone is also an important foraginghabitat for Antarctic marine birds. In the Arctic, a food webbased on underice algae is used by marine birds, but few ifany data exist on avian use of the open water segment of themarginal ice zone. Recent simultaneous surveys of birds and their prey indicatethat only rarely does the small-scale abundance of birds matchthat of their prey; correlations between predators and preyaregenerally stronger at larger scales. Evidence is accumulatingin the Antarctic that the largestaggregations of krill may bedisproportionately important to foraging seabirds.  相似文献   

9.
10.

Background

Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families.

Methodology/Principal Findings

We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper''s Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species.

Conclusions

Cooper''s Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction.  相似文献   

11.
Landscape changes can alter pollinator movement and foraging patterns which can in turn influence the demographic processes of plant populations. We leveraged social network models and four fixed arrays of five hummingbird feeders equipped with radio frequency identification (RFID) data loggers to study rufous hummingbird (Selasphorus rufus) foraging patterns in a heterogeneous landscape. Using a space-for-time approach, we asked whether forest encroachment on alpine meadows could restrict hummingbird foraging movements and impede resource discovery. We fit social network models to data on 2221 movements between feeders made by 29 hummingbirds. Movements were made primarily by females, likely due to male territoriality and early migration dates. Distance was the driving factor in determining the rate of movements among feeders. The posterior mean effects of forest landscape variables (local canopy cover and intervening forest cover) were negative, but with considerable uncertainty. Finally, we found strong reciprocity in hummingbird movements, indicative of frequent out and back movements between resources. Together, these findings suggest that reciprocal movements by female hummingbirds could help maintain bidirectional gene flow among nearby subpopulations of ornithophilous plants; however, if the distance among meadows increases with further forest encroachment, this may limit foraging among progressively isolated meadows.  相似文献   

12.
Foraging distributions are thought to be density‐dependent, because animals not only select for a high availability and quality of resources, but also avoid conspecific interference. Since these processes are confounded, their relative importance in shaping foraging distributions remains poorly understood. Here we aimed to rank the contribution of density‐dependent and density‐independent effects on the spatio‐temporal foraging patterns of eurasian oystercatchers. In our intertidal study area, tides caused continuous variation in oystercatcher density, providing an opportunity to disentangle conspecific interference and density‐independent interactions with the food landscape. Spatial distributions were quantified using high‐resolution individual tracking of foraging activity and location. In a model environment that included a realistic reconstruction of both the tides and the benthic food, we tested a family of behaviour‐based optimality models against these tracking data. Density‐independent interactions affected spatial distributions much more strongly than conspecific interference, even in an interference‐prone species like oystercatchers. Spatial distributions were governed by avoidance of bill injury costs, selection for high interference‐free intake rates and a decreasing availability of benthic bivalve prey after their exposure. These density‐independent interactions outweighed interference competition in terms of effect size. We suggest that the bottleneck in our mechanistic understanding of foraging distributions may be primarily the role of density‐independent prey attributes unrelated to intake rates, like damage costs in the case of oystercatchers foraging on perilous prey. At a landscape scale, above the finest inter‐individual distances, effects of conspecific interaction on spatial distributions may have been overemphasised.  相似文献   

13.
Predictable sources of food underpin lifetime reproductive output in long lived animals. The most important foraging areas of top marine predators are therefore likely to be related to environmental features that enhance productivity in predictable spatial and temporal patterns. Even so, although productive areas within the marine environment are distributed patchily in space and time, most studies assess the relationships between feeding activity and proximate, not long term, environmental characteristics. In addition, individuals within a population may exploit different prey types, and these are often associated with different hydrographic features. Until now, models attempting to associate core foraging areas (CFAs) of marine predators with the environmental characteristics of those areas have not considered the diet of individual animals, despite the influence this could have on these relationships. We used bathymetry and multi‐year (n=24) mean sea surface temperature and variability as predictors of CFAs of lactating Antarctic fur seals Arctocephalus gazella at Heard Island. The effect of prey types on the predictability of these models was explored by matching diet and foraging trip data of individual seals (n=40 seals, n=1 trip each). Differences in diet between seals were mirrored by their spatial behaviour. Foraging strategies differed both between and within groups of seals consuming different diets. Long‐term environmental parameters were useful for predicting the foraging activity of seals that consumed a single prey type with relatively specific habitat preferences, but not for those that consumed single or multiple prey types associated with more varied habitats. Ignoring individual variation in predator diet probably contributes to the poor performance of foraging habitat models. These findings highlight the importance of incorporating individual specialization in foraging behaviour into ecological models and management of predator populations.  相似文献   

14.
ABSTRACT The success of most foragers is constrained by limits to their sensory perception, memory, and locomotion. However, a general and quantitative understanding of how these constraints affect foraging benefits, and the trade-offs they imply for foraging strategies, is difficult to achieve. This article develops foraging performance statistics to assess constraints and define trade-offs for foragers using biased random walk behaviors, a widespread class of foraging strategies that includes area-restricted searches, kineses, and taxes. The statistics are expected payoff and expected travel time and assess two components of foraging performance: how effectively foragers distinguish between resource-poor and resourcerich parts of their environments and how quickly foragers in poor parts of the environment locate resource concentrations. These statistics provide a link between mechanistic models of individuals' movement and functional responses, population-level models of forager distributions in space and time, and foraging theory predictions of optimal forager distributions and criteria for abandoning resource patches. Application of the analysis to area-restricted search in coccinellid beetles suggests that the most essential aspect of these predators's foraging strategy is the "turning threshold," the prey density at which ladybirds switch from slow to rapid turning. This threshold effectively determines whether a forager exploits or abandons a resource concentration. Foraging is most effective when the threshold is tuned to match physiological or energetic requirements. These performance statistics also help anticipate and interpret the dynamics of complex spatially and temporally varying forager-resource systems.  相似文献   

15.
Fisheries have major impacts on seabirds, both by changing food availability and by causing direct mortality of birds during trawling and longline setting. However, little is known about the nature and the spatial-temporal extent of the interactions between individual birds and vessels. By studying a system in which we had fine-scale data on bird movements and activity, and near real-time information on vessel distribution, we provide new insights on the association of a threatened albatross with fisheries. During early chick-rearing, black-browed albatrosses Thalassarche melanophris from two different colonies (separated by only 75 km) showed significant differences in the degree of association with fisheries, despite being nearly equidistant to the Falklands fishing fleet. Most foraging trips from either colony did not bring tracked individuals close to vessels, and proportionally little time and foraging effort was spent near ships. Nevertheless, a few individuals repeatedly visited fishing vessels, which may indicate they specialise on fisheries-linked food sources and so are potentially more vulnerable to bycatch. The evidence suggests that this population has little reliance on fisheries discards at a critical stage of its nesting cycle, and hence measures to limit fisheries waste on the Patagonian shelf that also reduce vessel attractiveness and the risk of incidental mortality, would be of high overall conservation benefit.  相似文献   

16.
We examined a recent notion that differences in echolocation call frequency amongst geographic groups of constant frequency (CF)-emitting bats is the result of a trade-off between maximising prey detection range at lower frequencies and enhancing small-prey resolution at higher frequencies in different atmospheric (relative humidity; RH) environments. Isolated populations of the endemic Australian orange leaf-nosed bat Rhinonicteris aurantia were used as an example since geographic isolation in different environments has been a precursor to differences in their characteristic echolocation call frequencies (mean difference c. 6 kHz; means of 114.64 and 120.99 kHz). The influence of both atmospheric temperature and RH on maximum prey detection range was explored through mathematical modelling. This revealed that temperature was of similar importance to relative humidity and that under certain circumstances, each could reduce the effect of the other on ultrasound attenuation rates. The newly developed models contain significant conceptual improvements in method compared to other recent approaches, and can be applied to the situation of any other species of bat. For a given set of atmospheric conditions, the prey detection range of R. aurantia was reduced slightly when call frequency increased by 6 kHz, but an increase in RH, temperature or both reduced detection range significantly. A similar trend was also evident in prey detection volume ratios calculated for the same conditions. Spatial volume ratios were applied to assess the impact of changed atmospheric conditions and prey size on foraging ecology. Reductions in detection range associated with increases in RH and/or temperature also varied in relation to the size (cross sectional area) of insect prey. Modelling demonstrated that small (6 kHz) movements in call frequency could not compensate for the changes in prey detection range and spatial detection volumes that result from significant changes in atmospheric temperature or RH. The notion that differences in RH are the primary cause leading to adaptive evolution and speciation in CF-emitting bats by precipitating intraspecific differences in the mean call frequency of geographically isolated bat populations was not supported by the results of this case study.  相似文献   

17.
Predatory diving birds, such as cormorants (Phalacrocoracidae), have been generally regarded as visually guided pursuit foragers. However, due to their poor visual resolution underwater, it has recently been hypothesized that Great Cormorants do not in fact employ a pursuit-dive foraging technique. They appear capable of detecting typical prey only at short distances, and primarily use a foraging technique in which prey may be detected only at close quarters or flushed from a substratum or hiding place. In birds, visual field parameters, such as the position and extent of the region of binocular vision, and how these are altered by eye movements, appear to be determined primarily by feeding ecology. Therefore, to understand further the feeding technique of Great Cormorants we have determined retinal visual fields and eye movement amplitudes using an ophthalmoscopic reflex technique. We show that visual fields and eye movements in cormorants exhibit close similarity with those of other birds, such as herons (Ardeidae) and hornbills (Bucerotidae), which forage terrestrially typically using a close-quarter prey detection or flushing technique and/or which need to examine items held in the bill before ingestion. We argue that this visual field topography and associated eye movements is a general characteristic of birds whose foraging requires the detection of nearby mobile prey items from within a wide arc around the head, accurate capture of that prey using the bill, and visual examination of the caught prey held in the bill. This supports the idea that cormorants, although visually guided predators, are not primarily pursuit predators, and that their visual fields exhibit convergence towards a set of characteristics that meet the perceptual challenges of close-quarter prey detection or flush foraging in both aquatic and terrestrial environments.  相似文献   

18.
Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets of key predator groups like seabirds have conventionally been assessed from stomach content analyses, which cannot detect most gelatinous prey. As marine top predators are used to identify changes in the overall species composition of marine ecosystems, such biases in dietary assessment may impact our detection of important ecosystem regime shifts. We investigated albatross diet using DNA metabarcoding of scats to assess the prevalence of gelatinous zooplankton consumption by two albatross species, one of which is used as an indicator species for ecosystem monitoring. Black‐browed and Campbell albatross scats were collected from eight breeding colonies covering the circumpolar range of these birds over two consecutive breeding seasons. Fish was the main dietary item at most sites; however, cnidarian DNA, primarily from scyphozoan jellyfish, was present in 42% of samples overall and up to 80% of samples at some sites. Jellyfish was detected during all breeding stages and consumed by adults and chicks. Trawl fishery catches of jellyfish near the Falkland Islands indicate a similar frequency of jellyfish occurrence in albatross diets in years of high and low jellyfish availability, suggesting jellyfish consumption may be selective rather than opportunistic. Warmer oceans and overfishing of finfish are predicted to favour jellyfish population increases, and we demonstrate here that dietary DNA metabarcoding enables measurements of the contribution of gelatinous zooplankton to the diet of marine predators.  相似文献   

19.
Marine megafauna, including seabirds, are critically affected by fisheries bycatch. However, bycatch risk may differ on temporal and spatial scales due to the uneven distribution and effort of fleets operating different fishing gear, and to focal species distribution and foraging behavior. Scopoli's shearwater Calonectris diomedea is a long‐lived seabird that experiences high bycatch rates in longline fisheries and strong population‐level impacts due to this type of anthropogenic mortality. Analyzing a long‐term dataset on individual monitoring, we compared adult survival (by means of multi‐event capture–recapture models) among three close predator‐free Mediterranean colonies of the species. Unexpectedly for a long‐lived organism, adult survival varied among colonies. We explored potential causes of this differential survival by (1) measuring egg volume as a proxy of food availability and parental condition; (2) building a specific longline bycatch risk map for the species; and (3) assessing the distribution patterns of breeding birds from the three study colonies via GPS tracking. Egg volume was very similar between colonies over time, suggesting that environmental variability related to habitat foraging suitability was not the main cause of differential survival. On the other hand, differences in foraging movements among individuals from the three colonies expose them to differential mortality risk, which likely influenced the observed differences in adult survival. The overlap of information obtained by the generation of specific bycatch risk maps, the quantification of population demographic parameters, and the foraging spatial analysis should inform managers about differential sensitivity to the anthropogenic impact at mesoscale level and guide decisions depending on the spatial configuration of local populations. The approach would apply and should be considered in any species where foraging distribution is colony‐specific and mortality risk varies spatially.  相似文献   

20.
In tropical waters resources are usually scarce and patchy, and predatory species generally show specific adaptations for foraging. Tropical seabirds often forage in association with sub-surface predators that create feeding opportunities by bringing prey close to the surface, and the birds often aggregate in large multispecific flocks. Here we hypothesize that frigatebirds, a tropical seabird adapted to foraging with low energetic costs, could be a good predictor of the distribution of their associated predatory species, including other seabirds (e.g. boobies, terns) and subsurface predators (e.g., dolphins, tunas). To test this hypothesis, we compared distribution patterns of marine predators in the Mozambique Channel based on a long-term dataset of both vessel- and aerial surveys, as well as tracking data of frigatebirds. By developing species distribution models (SDMs), we identified key marine areas for tropical predators in relation to contemporaneous oceanographic features to investigate multi-species spatial overlap areas and identify predator hotspots in the Mozambique Channel. SDMs reasonably matched observed patterns and both static (e.g. bathymetry) and dynamic (e.g. Chlorophyll a concentration and sea surface temperature) factors were important explaining predator distribution patterns. We found that the distribution of frigatebirds included the distributions of the associated species. The central part of the channel appeared to be the best habitat for the four groups of species considered in this study (frigatebirds, brown terns, boobies and sub-surface predators).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号