首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high‐intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully ‘tracking’ climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm‐ and cold‐associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold‐associated species, whilst for butterflies, warm‐associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting ‘adaptive’ community reorganization in response to climate change. Specifically, high‐intensity land use appears to exacerbate declines in cold‐adapted bird and butterfly species, and prevent increases in warm‐associated birds. This has broad implications for managing landscapes to promote climate change adaptation.  相似文献   

2.
Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human‐driven land‐use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate‐driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold‐dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late.  相似文献   

3.
Although climate change is acknowledged to affect population dynamics and species distribution, details of how community composition is affected are still lacking. We investigate whether ongoing changes in bird community composition can be explained by contemporary changes in summer temperatures, using four independent long‐term bird census schemes from Sweden (up to 57 yr); two at the national scale and two at local scales. The change in bird community composition was represented by a community temperature index (CTI) that reflects the balance in abundance between low‐ and high‐temperature dwelling species. In all schemes, CTI tracked patterns of temperature increase, stability or decrease remarkably well, with a lag period of 1–3 yr. This response was similar at both the national and local scale. However, the communities did not respond fast enough to cope with temperature increase, suggesting that community composition lags behind changes in temperature. The change in CTI was caused mainly by changes in species’ relative abundances, and less so by changes in species composition. We conclude that ongoing changes in bird community structure are driven to a large extent by contemporary changes in climate and that CTI can be used as a simple indicator for how bird communities respond.  相似文献   

4.
Community‐level climate change indicators have been proposed to appraise the impact of global warming on community composition. However, non‐climate factors may also critically influence species distribution and biological community assembly. The aim of this paper was to study how fire–vegetation dynamics can modify our ability to predict the impact of climate change on bird communities, as described through a widely‐used climate change indicator: the community thermal index (CTI). Potential changes in bird species assemblage were predicted using the spatially‐explicit species assemblage modelling framework – SESAM – that applies successive filters to constrained predictions of richness and composition obtained by stacking species distribution models that hierarchically integrate climate change and wildfire–vegetation dynamics. We forecasted future values of CTI between current conditions and 2050, across a wide range of fire–vegetation and climate change scenarios. Fire–vegetation dynamics were simulated for Catalonia (Mediterranean basin) using a process‐based model that reproduces the spatial interaction between wildfire, vegetation dynamics and wildfire management under two IPCC climate scenarios. Net increases in CTI caused by the concomitant impact of climate warming and an increasingly severe wildfire regime were predicted. However, the overall increase in the CTI could be partially counterbalanced by forest expansion via land abandonment and efficient wildfire suppression policies. CTI is thus strongly dependent on complex interactions between climate change and fire–vegetation dynamics. The potential impacts on bird communities may be underestimated if an overestimation of richness is predicted but not constrained. Our findings highlight the need to explicitly incorporate these interactions when using indicators to interpret and forecast climate change impact in dynamic ecosystems. In fire‐prone systems, wildfire management and land‐use policies can potentially offset or heighten the effects of climate change on biological communities, offering an opportunity to address the impact of global climate change proactively.  相似文献   

5.
Effects of climate change on species occupying distinct areas during their life cycle are still unclear. Moreover, although effects of climate change have widely been studied at the species level, less is known about community responses. Here, we test whether and how the composition of wader (Charadrii) assemblages, breeding in high latitude and wintering from Europe to Africa, is affected by climate change over 33 years. We calculated the temporal trend in the community temperature index (CTI), which measures the balance between cold and hot dwellers present in species assemblages. We found a steep increase in the CTI, which reflects a profound change in assemblage composition in response to recent climate change. This study provides, to our knowledge, the first evidence of a strong community response of migratory species to climate change in their wintering areas.  相似文献   

6.
As global climate change and variability drive shifts in species’ distributions, ecological communities are being reorganized. One approach to understand community change in response to climate change has been to characterize communities by a collective thermal preference, or community temperature index (CTI), and then to compare changes in CTI with changes in temperature. However, important questions remain about whether and how responsive communities are to changes in their local thermal environments. We used CTI to analyze changes in 160 marine assemblages (fish and invertebrates) across the rapidly‐changing Northeast U.S. Continental Shelf Large Marine Ecosystem and calculated expected community change based on historical relationships between species presence and temperature from a separate training dataset. We then compared interannual and long‐term temperature changes with expected community responses and observed community responses over both temporal scales. For these marine communities, we found that community composition as well as composition changes through time could be explained by species associations with bottom temperature. Individual species had non‐linear responses to changes in temperature, and these nonlinearities scaled up to a nonlinear relationship between CTI and temperature. On average, CTI increased by 0.36°C (95% CI: 0.34–0.38°C) for every 1°C increase in bottom temperature, but the relationship between CTI and temperature also depended on community composition. In addition, communities responded more strongly to interannual variation than to long‐term trends in temperature. We recommend that future research into climate‐driven community change accounts for nonlinear responses and examines ecological responses across a range of temporal and geographical scales.  相似文献   

7.
Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species‐specific responses are resulting in community‐wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm‐adapted species. To do this, we quantified changes in community composition using a functional index – the Community Temperature Index (CTI) – which measures the balance between low‐ and high‐temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (= 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22‐year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm‐adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.  相似文献   

8.
The spatial distributions of species, and the resulting composition of local communities, are shaped by a complex interplay between species’ climatic and habitat preferences. We investigated this interaction by analyzing how the climatic niches of bird species within given communities (measured as a community thermal index, CTI) are related to vegetation structure. Using 3129 bird communities from the French Breeding Bird Survey and an information theoretic multimodel inference framework, we assessed patterns of CTI variation along landscape scale gradients of forest cover and configuration. We then tested whether the CTI varies along local scale gradients of forest structure and composition using a detailed data set of 659 communities from six forests located in northwestern France. At landscape scale, CTI values decreased with increasing forest cover, indicating that bird communities were increasingly dominated by cold‐dwelling species. This tendency was strongest at low latitudes and in landscapes dominated by unfragmented forest. At local scale, CTI values were higher in mature deciduous stands than in conifer or early stage deciduous stands, and they decreased consistently with distance from the edge of forest. These trends underpin the assertion that species’ habitat use along forest gradients is linked with their climatic niche, although it remains unclear to what extent it is a direct consequence of microclimatic variation among habitats, or a reflection of macroscale correlations between species’ thermal preferences and their habitat choice. Moreover, our results highlight the need to address issues of scale in determining how habitat and climate interact to drive the spatial distribution of species. This will be a crucial step towards accurate predictions of changes in the composition and dynamics of bird communities under global warming.  相似文献   

9.
Range shifts of many species are now documented as a response to global warming. But whether these observed changes are occurring fast enough remains uncertain and hardly quantifiable. Here, we developed a simple framework to measure change in community composition in response to climate warming. This framework is based on a community temperature index (CTI) that directly reflects, for a given species assemblage, the balance between low- and high-temperature dwelling species. Using data from the French breeding bird survey, we first found a strong increase in CTI over the last two decades revealing that birds are rapidly tracking climate warming. This increase corresponds to a 91 km northward shift in bird community composition, which is much higher than previous estimates based on changes in species range edges. During the same period, temperature increase corresponds to a 273 km northward shift in temperature. Change in community composition was thus insufficient to keep up with temperature increase: birds are lagging approximately 182 km behind climate warming. Our method is applicable to any taxa with large-scale survey data, using either abundance or occurrence data. This approach can be further used to test whether different delays are found across groups or in different land-use contexts.  相似文献   

10.
Aim  Worldwide, functional homogenization is now considered to be one of the most prominent forms of biotic impoverishment induced by current global changes. Yet this process has hardly been quantified on a large scale through simple indices, and the connection between landscape disturbance and functional homogenization has hardly been established. Here we test whether changes in land use and landscape fragmentation are associated with functional homogenization of bird communities at a national scale.
Location  France.
Methods  We estimated functional homogenization of a community as the average specialization of the species present in that community. We studied the spatial variation of this community specialization index (CSI) using 1028 replicates from the French Breeding Bird Survey along spatial gradients of landscape fragmentation and recent landscape disturbance, measured independently, and accounting for spatial autocorrelation.
Results  The CSI was very sensitive to both measures of environmental degradation: on average, 23% of the difference in the CSI values between two sample sites was attributed to the difference in fragmentation and the disturbance between sites. This negative correlation between CSI and sources of landscape degradation was consistent over various habitats and biogeographical zones.
Main conclusions  We demonstrate that the functional homogenization of bird communities is strongly positively correlated to landscape disturbance and fragmentation. We suggest that the CSI is particularly effective for measuring functional homogenization on both local and global scales for any sort of organism and with abundance or presence–absence data.  相似文献   

11.
Forests worldwide are experiencing rapid environmental change due to human activity. We aimed to increase understanding of anthropogenic impacts on community composition and species interactions. In a natural experiment, we asked whether subsistence human land use has altered the community composition of a Neotropical rain forest on the island of Tobago, in the West Indies. We surveyed fruiting plants and birds in three adjacent habitat types that varied in level of disturbance, and used multivariate analyses to determine whether changes in the plant community were associated with differences in avifauna composition. The three forest habitats had similar plant and bird diversities, yet markedly different species compositions and abundances. Primary forest had the most diverse plant community, while disturbed habitats had a more homogeneous plant composition. Primary and disturbed forest had distinct community compositions, with canopy cover and the relative abundance of plant types explaining 83 percent of the variation in bird species assemblages. Seemingly moderate human disturbance has led to substantial changes in the plant and bird assemblages of Tobago's rain forest, outside of a protected reserve. Our study highlights the direct links between human disturbance and the structure of rain forests, underscoring the impact of even moderate activity on community composition.  相似文献   

12.
Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local‐to‐regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in β‐diversity—differences among sites in their species compositions—is critical to forecast communities in the Anthropocene. Here, we study patterns in bird β‐diversity across land‐use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate β‐diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land‐use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%–11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization.  相似文献   

13.
Aim Urbanization and deforestation are important drivers of biodiversity change. However, long‐term changes in faunal communities within urbanizing regions are poorly understood. We investigated how well observed community changes in both space and time agree with expectations based on current paradigms in urban ecology. Location Greater Brisbane region, Australia. Methods We compared bird assemblages in two time‐periods 15 years apart, at multiple sites in remnant forest and residential suburbs across an urbanizing landscape. Differences in assemblage composition, species abundances and functional groupings were assessed within and between habitats. Results Compared with forest, suburbs in both time‐periods had over twice the total bird abundance, a different species composition, greater between‐site community similarity, a greater proportion of non‐native species and greater dominance by large‐bodied species. These differences corresponded with changes in sites whose habitat was converted from forest to suburb. Between time‐periods, abundances of 58% of suburban species changed significantly compared with those of 11% in forest. Increaser species outnumbered decreasers in suburbs, with the reverse in forest. Abundance of small‐bodied birds decreased 70% in suburbs and 20% in forest. Broad‐spectrum competitors and nest predators were common among suburban increasers. Among invasive species, the number of increasers was counterbalanced by decreasers. Both site‐scale species richness and between‐site community similarity increased to a small extent in both habitats. Main conclusions Species composition and ecological function of suburban bird communities were very dynamic. Suburban assemblages were neither a subset of forest species nor an increasingly non‐native compilation. Communities in large forest patches were comparatively stable. The notion of habitat‐specific species turnover better characterizes the nature of most changes than either species decline or homogenization, even though both of these were evident. There is considerable scope for careful urban planning, focused on both among‐ and within‐habitat variety, to sustain bird diversity in urbanizing landscapes.  相似文献   

14.
Few studies have covered both the effects of climate and land‐use change on animal populations under a single framework. Besides, the scarce multi‐species studies conducted have focused on breeding data, and there is little information published on changes in wintering populations. Here, we relate the pattern of long‐term temporal trends of wintering bird populations in Finland, north Europe, to covariates associated with climate and land‐use change. Finnish wintering populations have been monitored using ca 10 km winter bird census routes (> 420 routes counted annually) during 1959–2012. Population trends of 63 species were related to migratory strategy, urbanity, and thermal niche measured as species‐specific centre of gravity of the wintering distribution. Waterbird trends have shown a marked increase compared to landbirds. Among landbirds, forest species have suffered severe declines, whereas urban species have considerably increased in their wintering numbers. To follow up these results, we produced three multi‐species indices (for waterbirds, forest and urban species, respectively), which can improve our ability to detect and monitor the specific consequences of climate change and changes in land‐use, but at the same time act as a feedback to track the conservation status of the species. Our results suggest that waterbirds are responding to climate change, given their dependence on open water and the correlation with early‐winter temperature over the last decades. On the other hand, we believe trends of landbirds have been mainly driven by human‐induced land‐use changes. While urban species have likely benefited from the increase of supplementary feeding, forest species have probably suffered from the loss of native habitats.  相似文献   

15.
Biotic homogenization (BH) is a process whereby some species (losers) are systematically replaced by others (winners). While this process has been related to the effects of anthropogenic activities, whether and how BH is occurring across regions and the role of native species as a driver of BH has hardly been investigated. Here, we examine the trend in the community specialization index (CSI) for 234 native species of breeding birds at 10 111 sites in six European countries from 1990 to 2008. Unlike many BH studies, CSI uses abundance information to estimate the balance between generalist and specialist species in local assemblages. We show that bird communities are more and more composed of native generalist species across regions, revealing a strong, ongoing BH process. Our result suggests a rapid and non-random change in community composition at a continental scale is occurring, most likely driven by anthropogenic activities.  相似文献   

16.
Species richness of migratory birds is influenced by global climate change   总被引:2,自引:2,他引:0  
Aim  Global climate change is increasingly influencing ecosystems. Long-term effects on the species richness and composition of ecological communities have been predicted using modelling approaches but, so far, hardly demonstrated in the field. Here, we test whether changes in the composition of bird communities have been influenced by recent climate change.
Location  Europe.
Methods  We focus on the proportion of migratory and resident bird species because these groups are expected to respond differently to climatic change. We used the spatial relationship between climatic factors and bird communities in Europe to predict changes in 21 European bird communities under recent climate change.
Results  Observed changes corresponded significantly to predicted changes and could not be explained by the effects of spatial autocorrelation. Alternative factors such as changes in land use were tested in a first approximation as well but no effects were found.
Main conclusions  This study demonstrates that global climate change has already influenced the species richness and composition of European bird communities.  相似文献   

17.
Rapid human population growth has driven conversion of land for uses such as agriculture, transportation and buildings. The removal of natural vegetation changes local climate, with human-dominated land uses often warmer and drier than natural habitats. Yet, it remains an open question whether land-use changes influence the composition of ecological assemblages in a direction consistent with the mechanism of local climatic change. Here, we used a global database of terrestrial vertebrates (mammals, birds, reptiles and amphibians) to test whether human-dominated land uses systematically favour species with distinctive realised climatic niches. We 1) explored the responses of community-average temperature and precipitation niches to different types of land use, 2) quantified the abundances of species with distinctive climatic niches across land uses and 3) tested for differences in emergent patterns in communities from tropical versus temperate latitudes. We found that, in comparison to species from undisturbed natural habitats, the average animal found in human-altered habitats lives in areas with higher maximum and lower minimum temperatures and higher maximum and lower minimum precipitation levels. We further found that tropical assemblages diverged more strongly than temperate assemblages between natural and human-altered habitats, possibly because tropical species are more sensitive to climatic conditions. These results strongly implicate the role of land-use change in favouring species affiliated with more extreme climatic conditions, thus systematically reshaping the composition of terrestrial biological assemblages. Our findings have the potential to inform species' vulnerability assessments and highlight the importance of preserving local climate refugia.  相似文献   

18.
Aim Species can respond to global climate change by range shifts or by phenotypic adaptation. At the community level, range shifts lead to a turnover of species, i.e. community reassembly. In contrast, phenotypic adaptation allows species to persist in situ, conserving community composition. So far, community reassembly and adaptation have mostly been studied separately. In nature, however, both processes take place simultaneously. In migratory birds, climate change has been shown to result in both exchange of species and adaptation of migratory behaviour. The aim of our study is to predict the impact of global climate change on migratory bird communities and to assess the extent to which reassembly and adaptation may contribute to alterations. Location Europe. Methods We analysed the relationship between current climate and the proportion of migratory species across bird assemblages in Europe. The magnitude of community reassembly was measured using spatial variation in the proportion of potentially migratory species. Adaptation was inferred from spatial variation in the proportion of potentially migratory species that actually migrate at a specific site. These spatial relationships were used to make temporal predictions of changes in migratory species under global climate change. Results According to our models, increasing winter temperature is expected to lead to declines in the proportion of migratory species, whereas increasing spring temperature and decreasing spring precipitation may lead to increases. Changes in winter and spring temperature are expected to cause mainly adaptation in migratory activity, while changes in spring precipitation may result in both changes in the proportion of potentially migratory species and adaptation of migratory activity. Main conclusions Under current climate change forecasts, changes in the proportion of migratory species will be modest and the communities of migratory birds in Europe are projected to be altered through adaptation of migratory activity rather than through exchange of species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号