首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1−/−) weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1−/− mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1−/− mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.  相似文献   

2.
The divergent TGF-β superfamily member, macrophage inhibitory cytokine-1 (MIC-1/GDF15), is overexpressed by most cancers, including prostate cancer (PCa). Whilst its circulating levels are linked to cancer outcome, the role MIC-1/GDF15 plays in cancer development and progression is incompletely understood. To investigate its effect on PCa development and spread, we have used TRAMP prostate cancer prone mice bearing a germline deletion of MIC-1/GDF15 (TRAMPMIC-/-). On average TRAMPMIC-/- mice died about 5 weeks earlier and had larger prostatic tumors compared with TRAMP mice that were wild type for MIC-1/GDF15 (TRAMPMIC+/+). Additionally, at the time of death or ethical end point, even when adjusted for lifespan, there were no significant differences in the number of mice with metastases between the TRAMPMIC+/+ and TRAMPMIC-/- groups. However, consistent with our previous data, more than twice as many TRAMP mice overexpressing MIC-1/GDF15 (TRAMPfmsmic-1) had metastases than TRAMPMIC+/+ mice (p<0.0001). We conclude that germ line gene deletion of MIC-1/GDF15 leads to increased local tumor growth resulting in decreased survival consistent with an overall protective role for MIC-1/GDF15 in early primary tumor development. However, in advancing disease, as we have previously noted, MIC-1/GDF15 overexpression may promote local invasion and metastatic spread.  相似文献   

3.
Macrophage inhibitory cytokine-1 (MIC-1/GDF15), a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa) and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1(fms)) to produce syngeneic TRAMP(fmsmic-1) mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1(fms) and syngeneic C57BL/6 mice. Whilst TRAMP(fmsmic-1) survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU) tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1(fms) mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.  相似文献   

4.
5.
Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight through activation of hindbrain receptor glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) in rodents and nonhuman primates, thus endogenous induction of this peptide holds promise for obesity treatment. Here, through in silico drug-screening methods, we found that small molecule Camptothecin (CPT), a previously identified drug with potential antitumor activity, is a GDF15 inducer. Oral CPT administration increases circulating GDF15 levels in diet-induced obese (DIO) mice and genetic ob/ob mice, with elevated Gdf15 expression predominantly in the liver through activation of integrated stress response. In line with GDF15’s anorectic effect, CPT suppresses food intake, thereby reducing body weight, blood glucose, and hepatic fat content in obese mice. Conversely, CPT loses these beneficial effects when Gdf15 is inhibited by a neutralizing antibody or AAV8-mediated liver-specific knockdown. Similarly, CPT failed to reduce food intake and body weight in GDF15’s specific receptor GFRAL-deficient mice despite high levels of GDF15. Together, these results indicate that CPT is a promising anti-obesity agent through activation of GDF15-GFRAL pathway.

Elevated circulating levels of growth differentiation factor 15 (GDF15) have been shown to reduce food intake and lower body weight in rodents and nonhuman primates. This study reveals that the small molecule Camptothecin induces endogenous GDF15, suppressing food intake and reducing body weight in obese mice, suggesting a promising candidate for anti-obesity treatment.  相似文献   

6.
Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor β superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.  相似文献   

7.
Energy intake and expenditure is a highly conserved and well-controlled system with a bias toward energy intake. In times of abundant food supply, individuals tend to overeat and in consequence to increase body weight, sometimes to the point of clinical obesity. Obesity is a disease that is not only characterized by enormous body weight but also by rising morbidity for diabetes type II and cardiovascular complications. To better understand the critical factors contributing to obesity we performed the present study in which the effects of energy expenditure and energy intake were examined with respect to body weight, localization of fat and insulin resistance in normal Wistar rats. It was found that a diet rich in fat and carbohydrates similar to "fast food" (cafeteria diet) has pronounced implication in the development of obesity, leading to significant body weight gain, fat deposition and also insulin resistance. Furthermore, an irregularly presented cafeteria diet (yoyo diet) has similar effects on body weight and fat deposition. However, these rats were not resistant to insulin, but showed an increased insulin secretion in response to glucose. When rats were fed with a specified high fat/carbohydrate diet (10% fat, 56.7% carbohydrate) ad lib or at the beginning of their activity phase they were able to detect the energy content of the food and compensate this by a lower intake. They, however, failed to compensate when food was given in the resting phase and gained more body weight as controls. Exercise, even of short duration, was able to keep rats on lower body weight and reduced fat deposition. Thus, inappropriate food intake with different levels of energy content is able to induce obesity in normal rats with additional metabolic changes that can be also observed in humans.  相似文献   

8.
Using circulating inflammatory markers and magnetic resonance imaging (MRI), recent studies have associated inflammation with brain volumetric measures. Macrophage Inhibitory Cytokine–1 (MIC-1/GDF15) is a divergent transforming growth factor – beta (TGF-β) superfamily cytokine. To uncover the underlying mechanisms of the previous finding of a negative association between MIC-1/GDF15 serum levels and cognition, the present study aimed to examine the relationship of circulating MIC-1/GDF15 levels with human brain gray matter (GM) volumes, in a community-dwelling sample aged 70–90 years over two years (Wave 1: n = 506, Wave 2: n = 327), of which the age-related brain atrophy had been previously well defined. T1-weighted MRI scans were obtained at both waves and analyzed using the FMRIB Software Library and FreeSurfer. The results showed significantly negative associations between MIC-1/GDF15 serum levels and both subcortical and cortical GM volumes. GM volumes of the whole brain, cortex, temporal lobe, thalamus and accumbens showed significant mediating effects on the associations between MIC-1/GDF15 serum levels and global cognition scores. Increases in MIC-1/GDF15 serum levels were associated with decreases in cortical and subcortical GM volume over two years. In conclusion, MIC-1/GDF15 serum levels were inversely associated with GM volumes both cross-sectionally and longitudinally.  相似文献   

9.
Although many feeding protocols induce obesity, few use multiple foods to analyze diet selection within a single group of animals. To this end, we describe a protocol using time-limited access to a dessert that induces hyperphagia and body weight gain while allowing simple analysis of diet selection. Female retired breeder Sprague-Dawley rats were provided with ad libitum access to standard moist chow (1.67 kcal/g) and daily 8-h nocturnal access to either a sugar gel (SG; 0.31 kcal/g) or sugar fat whip (SFW; 7.35 kcal/g) for 15 days, and food intake and body weight were measured daily. Rats given SFW reduced moist chow intake but not enough to compensate for the large amount of calories consumed from SFW, and thus gained weight. We use this SFW overconsumption protocol to investigate the hypothesis that cannabinoid (CB)1 receptor antagonists reduce caloric intake by selectively decreasing consumption of palatable foods. In two experiments, female retired breeder Sprague-Dawley rats were injected with either Rimonabant (1 mg/kg ip) or vehicle (equal parts polyethylene glycol and saline, 1 ml/kg ip) for 7 days, or one of three doses of AM251 (0.3, 1.0, or 3.0 mg/kg ip), or vehicle for 15 days; food intake and body weight were measured daily. Both Rimonabant and AM251 decreased 24-h caloric intake, but the reduction was specific to a decrease in SFW consumption. This supports the hypothesis that these CB1 receptor antagonists impact feeding by modulating the perception of palatability.  相似文献   

10.
UCP1 deficiency increases susceptibility to diet-induced obesity with age   总被引:1,自引:0,他引:1  
Loss of nonshivering thermogenesis in mice by inactivation of the mitochondrial uncoupling protein gene (Ucp1-/- mice) causes increased sensitivity to cold and unexpected resistance to diet-induced obesity at a young age. To clarify the role of UCP1 in body weight regulation throughout life and influence of UCP1 deficiency on longevity, we longitudinally analyzed the phenotypes of Ucp1-/- mice maintained in a room at 23 degrees C. There was no difference in body weight and lifespan between genotypes under the standard chow diet condition, whereas the mutant mice developed obesity with age under the high-fat (HF) diet condition. Compared with Ucp1+/+ mice, Ucp1-/- mice showed increased expression of genes related to thermogenesis and fatty acid metabolism, such as beta3-adrenergic receptor, in adipose tissues of the 3-month-old mutants; however, the augmented expression was reduced in Ucp1+/+ mice in 11-month-old Ucp1-/- mice fed the HF diet. Likewise, the increased levels of UCP3 and cAMP-dependent protein kinase in the brown adipose tissue of Ucp1-/- mice given the standard diet were decreased significantly in that of Ucp1-/- mice fed the HF diet, which animals showed impaired norepinephrine-induced lipolysis in their adipose tissues. These results suggest profound attenuation of beta-adrenergic responsiveness and fatty acid utilization in Ucp1-/- mice fed the HF diet, bringing them to late-onset obesity. Our findings provide evidence that UCP1 is neither essential for body weight regulation nor for longevity under conditions of standard diet and normal housing temperature, but deficiency increases susceptibility to obesity with age in combination with HF diet.  相似文献   

11.
We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets — LSO, FO2.5, FO12.5 or FO25 — containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.  相似文献   

12.
In this study, susceptibility of inbred C57BL/6 and outbred NMRI mice to monosodium glutamate (MSG) obesity or diet-induced obesity (DIO) was compared in terms of food intake, body weight, adiposity as well as leptin, insulin and glucose levels. MSG obesity is an early-onset obesity resulting from MSG-induced lesions in arcuate nucleus to neonatal mice. Both male and female C57BL/6 and NMRI mice with MSG obesity did not differ in body weight from their lean controls, but had dramatically increased fat to body weight ratio. All MSG obese mice developed severe hyperleptinemia, more remarkable in females, but only NMRI male mice showed massive hyperinsulinemia and an extremely high HOMA index that pointed to development of insulin resistance. Diet-induced obesity is a late-onset obesity; it developed during 16-week-long feeding with high-fat diet containing 60 % calories as fat. Inbred C57BL/6 mice, which are frequently used in DIO studies, both male and female, had significantly increased fat to body weight ratio and leptin and glucose levels compared with their appropriate lean controls, but only female C57BL/6 mice had also significantly elevated body weight and insulin level. NMRI mice were less prone to DIO than C57BL/6 ones and did not show significant changes in metabolic parameters after feeding with high-fat diet.  相似文献   

13.
Prior data demonstrated differential roles for cholecystokinin (CCK)1 receptors in maintaining energy balance in rats and mice. CCK1 receptor deficiency results in hyperphagia and obesity of Otsuka Long-Evans Tokushima Fatty (OLETF) rats but not in mice. To ascertain the role of CCK1 receptors in high-fat-diet (HFD)-induced obesity, we compared alterations in food intake, body weight, fat mass, plasma glucose, and leptin levels, and patterns of hypothalamic gene expression in OLETF rats and mice lacking CCK1 receptors in response to a 10-wk exposure to HFD. Compared with Long-Evans Tokushima Otsuka (LETO) control rats, OLETF rats on HFD had sustained overconsumption over the 10-wk period. High fat feeding resulted in greater increases in body weight and plasma leptin levels in OLETF than in LETO rats. In situ hybridization determinations revealed that, while HFD reduced neuropeptide Y (NPY) mRNA expression in both the arcuate nucleus (Arc) and the dorsomedial hypothalamus (DMH) of LETO rats, HFD resulted in decreased NPY expression in the Arc but not in the DMH of OLETF rats. In contrast to these results in OLETF rats, HFD increased food intake and induced obesity to an equal degree in both wild-type and CCK1 receptor(-/-) mice. NPY gene expression was decreased in the Arc in response to HFD, but was not detectable in the DMH in both wild-type and CCK1 receptor(-/-) mice. Together, these data provide further evidence for differential roles of CCK1 receptors in the controls of food intake and body weight in rats and mice.  相似文献   

14.
Overactivity of the endocannabinoid system (ECS) has been linked to abdominal obesity and other risk factors for cardiovascular disease and type 2 diabetes. Conversely, administration of cannabinoid receptor type 1 (CB1) antagonists reduces adiposity in obese animals and humans. This effect is only in part secondary to the anorectic action of CB1 agonists. In order to assess the actions of CB1 antagonism on glucose homeostasis, diet‐induced obese (DIO) rats received the CB1 antagonist rimonabant (10 mg/kg, intraperitoneally (IP)) or its vehicle for 4 weeks, or were pair‐fed to the rimonabant‐treated group for the same length of time. Rimonabant treatment transiently reduced food intake, while inducing body weight loss throughout the study. Rats receiving rimonabant had significantly less body fat and circulating leptin compared to both vehicle and pair‐fed groups. Rimonabant, but not pair‐feeding, also significantly decreased circulating nonesterified fatty acid (NEFA) and triacylglycerol (TG) levels, and reduced TG content in oxidative skeletal muscle. Although no effects were observed during a glucose tolerance test (GTT), rimonabant restored insulin sensitivity to that of chow‐fed, lean controls during an insulin tolerance test (ITT). Conversely, a single dose of rimonabant to DIO rats had no acute effect on insulin sensitivity. These findings suggest that in diet‐induced obesity, chronic CB1 antagonism causes weight loss and improves insulin sensitivity by diverting lipids from storage toward utilization. These effects are independent of the anorectic action of the drug.  相似文献   

15.
We have examined the metabolic effects of daily administration of carbenoxolone (CBX), a naturally occurring 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) inhibitor, in mice with high fat diet-induced insulin resistance and obesity. Eight-week-old male Swiss TO mice placed on a synthetic high fat diet received daily intraperitoneal injections of either saline vehicle or CBX over a 16-day period. Daily administration of CBX had no effect on food intake, but significantly lowered body weight (1.1- to 1.2-fold) compared to saline-treated controls. Non-fasting plasma glucose levels were significantly decreased (1.6-fold) by CBX treatment on day 4 and remained lower throughout the treatment period. Circulating plasma corticosterone levels were not significantly altered by CBX treatment. Plasma glucose concentrations of CBX-treated mice were significantly reduced (1.4-fold) following an intraperitoneal glucose load compared with saline controls. Similarly, after 16-day treatment with CBX, exogenous insulin evoked a significantly greater reduction in glucose concentrations (1.4- to 1.8-fold). 11beta-HSD1 gene expression was significantly down-regulated in liver, whereas glucocorticoid receptor gene expression was increased in both liver and adipose tissue following CBX treatment. The reduced body weight and improved metabolic control in mice with high fat diet-induced obesity upon daily CBX administration highlights the potential value of selective 11beta-HSD1 inhibition as a new route for the treatment of type 2 diabetes and obesity.  相似文献   

16.
The objective of this work was to study the effect of early weaning on alimentary preference for the macronutrients protein, carbohydrate and fat in adult rats. Male Wistar rat pups were weaned by separation from the mother at 15 (D15) or 30 (D30) days old. Body weight and food intake were measured every 30 days until pups were 150 days old. At 110 days of age, the alimentary preference was evaluated for 1 h on 3 consecutive days. At 120 days of age, the palatable diet test was conducted during 3 consecutive 24-h periods. Body weight and food intake were not altered, but early weaning in rats induced an alimentary preference to fat and hyperphagia of a palatable diet. In conclusion, early weaning, although did not modify body weight or basal food intake, promoted an increased preference for palatable and fatty foods. This demonstrates that early weaning is not capable of promoting perceptible alterations of alimentary behavior under normal laboratory conditions. However, in the presence of a stimulating factor such as a choice of nutrients or a palatable diet, a possible latent effect on dietary preferences may become apparent. Over the long term, this preference for foods with high caloric density can lead to obesity and metabolic perturbations.  相似文献   

17.
Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain.  相似文献   

18.
Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high protein content at the expense of carbohydrates (LC-HF-HP) causes differential effects on body weight and glucose homeostasis that depend on the integrity of brain melanocortin (MC) signaling. In vehicle-treated rats, switching from HC to either HF or LC-HF-HP feeding caused similar reductions in food intake without alterations in body weight. A reduced caloric intake (-16% in HF and LC-HF-HP groups) required to maintain or increase body weight underlay these effects. Chronic third cerebroventricular infusion of the MC receptor antagonist SHU9119 (0.5 nmol/day) produced obesity and hyperphagia with an increased food efficiency again observed during HF (+19%) and LC-HF-HP (+33%) feeding. In this case, however, HF feeding exaggerated SHU9119-induced hyperphagia and weight gain relative to HC and LC-HF-HP feeding. Relative to vehicle-treated controls, SHU9119 treatment increased plasma insulin (2.8-4 fold), leptin (7.7-15 fold), and adiponectin levels (2.4-3.7 fold), but diet effects were only observed on plasma adiponectin (HC and LC-HF-HP相似文献   

19.
Irwin N  Hunter K  Flatt PR 《Peptides》2008,29(6):1036-1041
GIP receptor antagonism with (Pro3)GIP protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat diet. Furthermore, cannabinoid CB1 receptor antagonism with AM251 reduces appetite and body weight gain in mice. The present study has examined and compared the effects of chronic daily administrations of (Pro3)GIP (25 nmol/kg body weight), AM251 (6 mg/kg body weight) and a combination of both drugs in high-fat fed mice. Daily i.p. injection of (Pro3)GIP, AM251 or combined drug administration over 22 days significantly (P < 0.05 to <0.01) decreased body weight compared with saline-treated controls. This was associated with a significant (P < 0.05 to <0.01) reduction of food intake in mice treated with AM251. Plasma glucose levels and glucose tolerance were significantly (P < 0.05) lowered by 22 days (Pro3)GIP, AM251 or combined drug treatment. These changes were accompanied by a significant (P < 0.05) improvement of insulin sensitivity in all treatment groups. In contrast, AM251 lacked effects on glucose tolerance, metabolic response to feeding and insulin sensitivity in high-fat mice when administered acutely. These data indicate that chemical blockade of GIP- or CB1-receptor signaling using (Pro3)GIP or AM251, respectively provides an effective means of countering obesity and related abnormalities induced by consumption of high-fat energy-rich diet. AM251 lacks acute effects on glucose homeostasis and there was no evidence of a synergistic effect of combined treatment with (Pro3)GIP.  相似文献   

20.
Diet-related obesity is a major metabolic disorder. Excessive fat mass is associated with type 2 diabetes, hepatic steatosis, and arteriosclerosis. Dysregulation of lipid metabolism and adipose tissue function contributes to diet-induced obesity. Here, we report that β-arrestin-1 knock-out mice are susceptible to diet-induced obesity. Knock-out of the gene encoding β-arrestin-1 caused increased fat mass accumulation and decreased whole-body insulin sensitivity in mice fed a high-fat diet. In β-arrestin-1 knock-out mice, we observed disrupted food intake and energy expenditure and increased macrophage infiltration in white adipose tissue. At the molecular level, β-arrestin-1 deficiency affected the expression of many lipid metabolic genes and inflammatory genes in adipose tissue. Consistently, transgenic overexpression of β-arrestin-1 repressed diet-induced obesity and improved glucose tolerance and systemic insulin sensitivity. Thus, our findings reveal that β-arrestin-1 plays a role in metabolism regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号