首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
猪札幌病毒的研究进展   总被引:1,自引:0,他引:1  
猪札幌病毒(porcine sapovirus,PoSaV)是一种经粪-口途径传播引起猪急性胃肠炎的肠道病毒,对环境友好生态型养殖业构成一定威胁。研究表明,某些PoSaV与人SaV核苷酸序列具有很高的同源性,且越来越多来源于人和猪的SaV重组新毒株被发现,提示PoSaV具有跨种间感染及传播给人的潜在风险。迄今,PoSaV的入侵与感染、变异与迁移、免疫与致病、暴发与流行、跨种间感染与传播等机制尚不清楚。本文主要对PoSaV形态与抵抗力、基因组结构与功能、基因重组、传播方式、流行病学、受体等方面的研究进展进行综述。  相似文献   

2.
Bats are increasingly recognized as reservoir species for a variety of zoonotic viruses that pose severe threats to human health. While many RNA viruses have been identified in bats, little is known about bat retroviruses. Endogenous retroviruses (ERVs) represent genomic fossils of past retroviral infections and, thus, can inform us on the diversity and history of retroviruses that have infected a species lineage. Here, we took advantage of the availability of a high-quality genome assembly for the little brown bat, Myotis lucifugus, to systematically identify and analyze ERVs in this species. We mined an initial set of 362 potentially complete proviruses from the three main classes of ERVs, which were further resolved into 13 major families and 86 subfamilies by phylogenetic analysis. Consensus or representative sequences for each of the 86 subfamilies were then merged to the Repbase collection of known ERV/long terminal repeat (LTR) elements to annotate the retroviral complement of the bat genome. The results show that nearly 5% of the genome assembly is occupied by ERV-derived sequences, a quantity comparable to findings for other eutherian mammals. About one-fourth of these sequences belong to subfamilies newly identified in this study. Using two independent methods, intraelement LTR divergence and analysis of orthologous loci in two other bat species, we found that the vast majority of the potentially complete proviruses identified in M. lucifugus were integrated in the last ∼25 million years. All three major ERV classes include recently integrated proviruses, suggesting that a wide diversity of retroviruses is still circulating in Myotis bats.  相似文献   

3.
Horizontal DNA transfer is an important factor of evolution and participates in biological diversity. Unfortunately, the location and length of horizontal transfers (HTs) are known for very few species. The usage of short oligonucleotides in a sequence (the so-called genomic signature) has been shown to be species-specific even in DNA fragments as short as 1 kb. The genomic signature is therefore proposed as a tool to detect HTs. Since DNA transfers originate from species with a signature different from those of the recipient species, the analysis of local variations of signature along recipient genome may allow for detecting exogenous DNA. The strategy consists in (i) scanning the genome with a sliding window, and calculating the corresponding local signature (ii) evaluating its deviation from the signature of the whole genome and (iii) looking for similar signatures in a database of genomic signatures. A total of 22 prokaryote genomes are analyzed in this way. It has been observed that atypical regions make up ~6% of each genome on the average. Most of the claimed HTs as well as new ones are detected. The origin of putative DNA transfers is looked for among ~12000 species. Donor species are proposed and sometimes strongly suggested, considering similarity of signatures. Among the species studied, Bacillus subtilis, Haemophilus Influenzae and Escherichia coli are investigated by many authors and give the opportunity to perform a thorough comparison of most of the bioinformatics methods used to detect HTs.  相似文献   

4.
Brucella species are responsible for brucellosis, a worldwide zoonotic disease causing abortion in domestic animals and Malta fever in humans. Based on host preference, the genus is divided into six species. Brucella abortus, B. melitensis, and B. suis are pathogenic to humans, whereas B. ovis and B. neotomae are nonpathogenic to humans and B. canis human infections are rare. Limited genome diversity exists among Brucella species. Comparison of Brucella species whole genomes is, therefore, likely to identify factors responsible for differences in host preference and virulence restriction. To facilitate such studies, we used the complete genome sequence of B. melitensis 16M, the species highly pathogenic to humans, to construct a genomic microarray. Hybridization of labeled genomic DNA from Brucella species to this microarray revealed a total of 217 open reading frames (ORFs) altered in five Brucella species analyzed. These ORFs are often found in clusters (islands) in the 16M genome. Examination of the genomic context of these islands suggests that many are horizontally acquired. Deletions of genetic content identified in Brucella species are conserved in multiple strains of the same species, and genomic islands missing in a given species are often restricted to that particular species. These findings suggest that, whereas the loss or gain of genetic material may be related to the host range and virulence restriction of certain Brucella species for humans, independent mechanisms involving gene inactivation or altered expression of virulence determinants may also contribute to these differences.  相似文献   

5.
In this study, the full-length genome sequence of the prototype of sapovirus, namely Sapporo virus (SV82), was identified. Sapporo virus RNA was extracted from a fecal sample, amplified by RT-PCR and the PCR products sequenced directly and analyzed. Sequence analysis showed that Sapporo virus consists of 7433 nucleotides and has three open reading frames. The Sapporo strain shows 91.7% nucleotide sequence identity to the Manchester virus. Phylogenic analysis has also revealed the closeness of Sapporo virus to other sapovirus/genogroup I strains. Basic information on the evolutionary history of sapovirus analysis is provided here.  相似文献   

6.
The availability of multiple bacterial genome sequences has revealed a surprising extent of variability among strains of the same species. The human gastric pathogen Helicobacter pylori is known as one of the most genetically diverse species. We have compared the genome sequence of the duodenal ulcer strain P12 and six other H. pylori genomes to elucidate the genetic repertoire and genome evolution mechanisms of this species. In agreement with previous findings, we estimate that the core genome comprises about 1200 genes and that H. pylori possesses an open pan-genome. Strain-specific genes are preferentially located at potential genome rearrangement sites or in distinct plasticity zones, suggesting two different mechanisms of genome evolution. The P12 genome contains three plasticity zones, two of which encode type IV secretion systems and have typical features of genomic islands. We demonstrate for the first time that one of these islands is capable of self-excision and horizontal transfer by a conjugative process. We also show that excision is mediated by a protein of the XerD family of tyrosine recombinases. Thus, in addition to its natural transformation competence, conjugative transfer of genomic islands has to be considered as an important source of genetic diversity in H. pylori.  相似文献   

7.
Porcine sapoviruses (SaVs),which belong to the family Caliciviridae,have been considered potential zoonotic agents for human infection,and several cases have been reported in Asian countries. In this study,a total of 200 porcine fecal samples collected from Lulong county of China were tested. Among 200 samples,porcine sapoviruses were detected by RT-PCR in 17 samples (8.5%) showing their circulation in China. 14 out of 17 positive sapovirus strains were genetically related to the genogroup III (GIII) and we...  相似文献   

8.
Infection with Mycobacterium avium subsp. paratuberculosis causes Johne's disease in cattle and is also implicated in cases of Crohn's disease in humans. Another closely related strain, M. avium subsp. avium, is a health problem for immunocompromised patients. To understand the molecular pathogenesis of M. avium subspecies, we analyzed the genome contents of isolates collected from humans and domesticated or wildlife animals. Comparative genomic hybridizations indicated distinct lineages for each subspecies where the closest genomic relatedness existed between M. avium subsp. paratuberculosis isolates collected from human and clinical cow samples. Genomic islands (n = 24) comprising 846 kb were present in the reference M. avium subsp. avium strain but absent from 95% of M. avium subsp. paratuberculosis isolates. Additional analysis identified a group of 18 M. avium subsp. paratuberculosis-associated islands comprising 240 kb that were absent from most of the M. avium subsp. avium isolates. Sequence analysis of DNA regions flanking the genomic islands identified three large inversions in addition to several small inversions that could play a role in regulation of gene expression. Analysis of genes encoded in the genomic islands reveals factors that are probably important for various mechanisms of virulence. Overall, M. avium subsp. avium isolates displayed a higher level of genomic diversity than M. avium subsp. paratuberculosis isolates. Among M. avium subsp. paratuberculosis isolates, those from wildlife animals displayed the highest level of genomic rearrangements that were not observed in other isolates. The presented findings will affect the future design of diagnostics and vaccines for Johne's and Crohn's diseases and provide a model for genomic analysis of closely related bacteria.  相似文献   

9.
10.
Alu elements belonging to the previously identified "young" subfamilies are thought to have inserted in the human genome after the divergence of humans from non-human primates and therefore should not be present in non-human primate genomes. Polymerase chain reaction (PCR) based screening of over 500 Alu insertion loci resulted in the recovery of a few "young" Alu elements that also resided at orthologous positions in non-human primate genomes. Sequence analysis demonstrated these "young" Alu insertions represented gene conversion events of pre-existing ancient Alu elements or independent parallel insertions of older Alu elements in the same genomic region. The level of gene conversion between Alu elements suggests that it may have a significant influence on the single nucleotide diversity within the genome. All the instances of multiple independent Alu insertions within the same small genomic regions were recovered from the owl monkey genome, indicating a higher Alu amplification rate in owl monkeys relative to many other primates. This study suggests that the majority of Alu insertions in primate genomes are the products of unique evolutionary events.  相似文献   

11.
Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC) after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.  相似文献   

12.
Cyanobacteria are among the most abundant organisms present on earth and are considered to be one of the oldest known clades. Cyanobacteria are oxygenic photosynthetic bacteria and are well known as promising renewable sources of energy; therefore, it is important to understand aspects of their genomes in detail across species. Advances in sequencing technology and the availability of several cyanobacterial genomes have provided an excellent opportunity to understand the diversity and evolution of the cyanobacterial genome. Here, we compared the genomes of 62 different phototrophic cyanobacteria. Evaluation of genetic diversity of all the cyanobacteria species studied revealed that evolution from their common ancestors was polyphyletic. In addition, the genomes were very diverse and varied among species, and significant genomic diversity was observed at the species and strain level. Overall, we identified 56 different protein families of cyanobacteria species/strains and found that they varied significantly among strains of a species. The circadian clock proteins KaiA, KaiB and KaiC (KaiABC complex proteins) of cyanobacteria were found to be present and consistent in the majority of cyanobacterial species while absent in a few others. Evolutionary analysis of the KaiABC protein complex showed that the KaiA protein has a high frequency of polymorphism, and multiple alleles were found to be present at high frequency. These results demonstrated that evolution of phosphorylation events occurred via KaiA in the KaiABC complex. Furthermore, multiple sequence alignment showed that KaiA, KaiB and KaiC proteins are highly conserved in nature. Our results provide direct information regarding the presence of different protein or protein families in cyanobacteria. The information presented here will serve as a starting point to explore the genetic diversity of cyanobacteria with the potential to play important roles in biotechnological applications.  相似文献   

13.
Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3′-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.  相似文献   

14.
A substantial amount of genomic variation is now known to exist in humans and other primate species. Single nucleotide polymorphisms (SNPs) are thought to represent the vast majority of genomic differences among individuals in a given primate species and comprise about 0.1% of the genomes of two humans. However, recent studies have now shown that structural variation msay account for as much as 0.7% of the genomic differences in humans, of which copy number variants (CNVs) are the largest component. CNVs are segments of DNA that can range in size from hundreds of bases to millions of base pairs in length and have different number of copies between individuals. Recent technological advancements in array technologies led to genome-wide identification of CNVs and consequently revealed thousands of variable loci in humans, comprising as much as 12% of the human genome [A.J. Iafrate, L. Feuk, M.N. Rivera, M.L. Listewnik, P.K. Donahoe, Y. Qi, S.W. Scherer, C. Lee, Nat. Genet. 36 (2004) 949–951, [3]]. CNVs in humans have already been associated with susceptibility to certain complex diseases, dietary adaptation, and several neurological conditions. In addition, recent studies have shown that CNVs can be successfully implemented in population genetics research, providing important insights into human genetic variation. Nevertheless, the important role of CNVs in primate evolution and genetic diversity is still largely unknown. This article aims to outline the strengths and weaknesses of current comparative genomic hybridization array technologies that have been employed to detect CNV variation and the applications of these techniques to primate genetic research.  相似文献   

15.
Possessing three circular chromosomes is a distinct genomic characteristic of Burkholderia cenocepacia AU 1054, a clinically important pathogen in cystic fibrosis. In this study, base composition, codon usage and functional role category were analyzed in the B. cenocepacia AU 1054 genome. Although no bias in the base and codon usage was detected between any two chromosomes, function differences did exist in the genes of each chromosome. Similar base composition and differential functional role categories indicated that genes on these three chromosomes were relatively stable and that a proper division of labor was established. Based on variations in the base or codon usage, four small gene clusters were observed in all of the genes. Multivariate analysis revealed that protein hydrophobicity played a predominant role in shaping base usage bias, while horizontal gene transfer and the gene expression level were the two most important factors that affected the codon usage bias. Interestingly, we also found that these gene clusters were correlated with different biological functions: (i) 45 pyrimidine-leading-codon preferred genes were predominantly involved in regulatory function; (ii) most drug resistance-related genes involved in 826 genes that coding for hydrophobic proteins; (iii) most of the 111 horizontal transfer genes were responsible for genomic plasticity; and (iv) 73 highly expressed genes (predicted by their codon adaptation index values) showed environmental adaptation to cystic fibrosis. Our results showed that genes with base or codon usage bias were affected by mutational pressure and natural selection, and their functions could contribute to drug assistance and transmissible activity in B. cenocepacia.  相似文献   

16.
The nucleotide sequences of the Adh and Adhr genes of Drosophila kuntzei were derived from combined overlapping sequences of clones isolated from a genomic library and from cloned PCR and inverse-PCR fragments. Only a proximal promoter was detected upstream of the Adh gene, indicating that D. kuntzei Adh is regulated by a one-promoter system. Further upstream of the Adh structural gene, an adult enhancer region (AAE) was found that contains most of the regulatory sequences described for AAEs of other Drosophila species. Analysis of the ADH protein showed an amino acid change from valine to threonine in the active site at position 189 which is also found in D. funebris but is otherwise unique among DROSOPHILA: This difference alone may be responsible for the very low ADH activity found in this species and may cause a difference in substrate usage pattern. Codon bias in Adh and Adhr was comparable and found to be very low compared with other species. Phylogenetic analysis showed that D. kuntzei is closest related to D. funebris and D. immigrans. The time of divergence between D. kuntzei and D. funebris was estimated to be 14.2-20.2 Myr and that between D. kuntzei-D. funebris and D. immigrans to be 30.8-44.0 Myr. An analysis of the genetic variation in the Adh gene and upstream sequences of four European strains showed that this gene was highly variable. Overall nucleotide diversity (pi) was 0.0139, which is two times higher than that in D. melanogaster.  相似文献   

17.
The responses of marine species to environmental changes and anthropogenic pressures (e.g., fishing) interact with ecological and evolutionary processes that are not well understood. Knowledge of changes in the distribution range and genetic diversity of species and their populations into the future is essential for the conservation and sustainable management of resources. Almaco jack (Seriola rivoliana) is a pelagic fish with high importance to fisheries and aquaculture in the Pacific Ocean. In this study, we assessed contemporary genomic diversity and structure in loci that are putatively under selection (outlier loci) and determined their potential functions. Using a combination of genotype–environment association, spatial distribution models, and demogenetic simulations, we modeled the effects of climate change (under three different RCP scenarios) and fishing pressure on the species' geographic distribution and genomic diversity and structure to 2050 and 2100. Our results show that most of the outlier loci identified were related to biological and metabolic processes that may be associated with temperature and salinity. The contemporary genomic structure showed three populations—two in the Eastern Pacific (Cabo San Lucas and Eastern Pacific) and one in the Central Pacific (Hawaii). Future projections suggest a loss of suitable habitat and potential range contractions for most scenarios, while fishing pressure decreased population connectivity. Our results suggest that future climate change scenarios and fishing pressure will affect the genomic structure and genotypic composition of S. rivoliana and lead to loss of genomic diversity in populations distributed in the eastern-central Pacific Ocean, which could have profound effects on fisheries that depend on this resource.  相似文献   

18.
Effective prediction of future viral zoonoses requires an in-depth understanding of the heterologous viral population in key animal species that will likely serve as reservoir hosts or intermediates during the next viral epidemic. The importance of bats as natural hosts for several important viral zoonoses, including Ebola, Marburg, Nipah, Hendra, and rabies viruses and severe acute respiratory syndrome-coronavirus (SARS-CoV), has been established; however, the large viral population diversity (virome) of bats has been partially determined for only a few of the ~1,200 bat species. To assess the virome of North American bats, we collected fecal, oral, urine, and tissue samples from individual bats captured at an abandoned railroad tunnel in Maryland that is cohabitated by 7 to 10 different bat species. Here, we present preliminary characterization of the virome of three common North American bat species, including big brown bats (Eptesicus fuscus), tricolored bats (Perimyotis subflavus), and little brown myotis (Myotis lucifugus). In samples derived from these bats, we identified viral sequences that were similar to at least three novel group 1 CoVs, large numbers of insect and plant virus sequences, and nearly full-length genomic sequences of two novel bacteriophages. These observations suggest that bats encounter and disseminate a large assortment of viruses capable of infecting many different animals, insects, and plants in nature.  相似文献   

19.
Lactobacillus plantarum is a ubiquitous microorganism that is able to colonize several ecological niches, including vegetables, meat, dairy substrates and the gastro‐intestinal tract. An extensive phenotypic and genomic diversity analysis was conducted to elucidate the molecular basis of the high flexibility and versatility of this species. First, 185 isolates from diverse environments were phenotypically characterized by evaluating their fermentation and growth characteristics. Strains clustered largely together within their particular food niche, but human fecal isolates were scattered throughout the food clusters, suggesting that they originate from the food eaten by the individuals. Based on distinct phenotypic profiles, 24 strains were selected and, together with a further 18 strains from an earlier low‐resolution study, their genomic diversity was evaluated by comparative genome hybridization against the reference genome of L. plantarum WCFS1. Over 2000 genes were identified that constitute the core genome of the L. plantarum species, including 121 unique L. plantarum‐marker genes that have not been found in other lactic acid bacteria. Over 50 genes unique for the reference strain WCFS1 were identified that were absent in the other L. plantarum strains. Strains of the L. plantarum subspecies argentoratensis were found to lack a common set of 24 genes, organized in seven gene clusters/operons, supporting their classification as a separate subspecies. The results provide a detailed view on phenotypic and genomic diversity of L. plantarum and lead to a better comprehension of niche adaptation and functionality of the organism.  相似文献   

20.
Genomic diversity is the evolutionary foundation for adaptation to environmental change and thus is essential to consider in conservation planning. Island species are ideal for investigating the evolutionary drivers of genomic diversity, in part because of the potential for biological replicates. Here, we use genome data from 180 individuals spread among 27 island populations from 17 avian species to study the effects of island area, body size, demographic history and conservation status on contemporary genomic diversity. Our study expands earlier work on a small number of neutral loci to the entire genome and from a few species to many. We find significant positive correlation between island size and genomic diversity, a significant negative correlation between body size and genomic diversity, and that historical population declines significantly reduced contemporary genomic diversity. Our study shows that island size is the key factor in determining genomic diversity, indicating that habitat conservation is key to maintaining adaptive potential in the face of global environmental change. We found that threatened species generally had a significantly smaller values of Watterson's theta (θW = 4Neμ) compared to nonthreatened species, suggesting that θW may be useful as a conservation indicator for at‐risk species. Overall, these findings (a) provide biological insights into how genomic diversity scales with ecological, morphological and demographic factors; and (b) illustrate how population genomic data can be leveraged to better inform conservation efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号