首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Type 1 diabetes is a multigenic autoimmune disease, the genetic basis for which is perhaps best characterized in the nonobese diabetic (NOD) mouse model. We previously located a NOD diabetes susceptibility locus, designated Idd11, on mouse Chromosome (Chr) 4 by analyzing diabetic backcross mice produced after crossing NOD/Lt with the nondiabetic resistant strain C57BL/6 (B6) strain. In order to confirm Idd11 and further refine its location, three NOD congenic mouse strains with different B6 derived intervals within Chr 4 were generated. Two of the congenic strains had a significant decrease in the cumulative incidence of diabetes compared with NOD/Lt control mice. The third NOD congenic strain, containing a B6 interval surrounding the Slc9a1 locus, was not protected against diabetes. These results define a new distal boundary for Idd11 and eliminate the Slc9a1 gene as a candidate. The Idd11 locus has now been definitively mapped to a 13cM interval on mouse Chr 4. Received: 15 May 1999 / Revised: 25 September 1999  相似文献   

2.
The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease.  相似文献   

3.
Linkage analysis and congenic mapping in NOD mice have identified a susceptibility locus for type 1 diabetes, Idd5.1 on mouse chromosome 1, which includes the Ctla4 and Icos genes. Besides type 1 diabetes, numerous autoimmune diseases have been mapped to a syntenic region on human chromosome 2q33. In this study we determined how the costimulatory molecules encoded by these genes contribute to the immunopathogenesis of experimental autoimmune encephalomyelitis (EAE). When we compared levels of expression of costimulatory molecules on T cells, we found higher ICOS and lower full-length CTLA-4 expression on activated NOD T cells compared with C57BL/6 (B6) and C57BL/10 (B10) T cells. Using NOD.B10 Idd5 congenic strains, we determined that a 2.1-Mb region controls the observed expression differences of ICOS. Although Idd5.1 congenic mice are resistant to diabetes, we found them more susceptible to myelin oligodendrocyte glycoprotein 35-55-induced EAE compared with NOD mice. Our data demonstrate that higher ICOS expression correlates with more IL-10 production by NOD-derived T cells, and this may be responsible for the less severe EAE in NOD mice compared with Idd5.1 congenic mice. Paradoxically, alleles at the Idd5.1 locus have opposite effects on two autoimmune diseases, diabetes and EAE. This may reflect differential roles for costimulatory pathways in inducing autoimmune responses depending upon the origin (tissue) of the target Ag.  相似文献   

4.
APCs of the nonobese diabetic (NOD) mouse have a genetically programmed capacity to overexpress IL-12p40, a cytokine critical for development of pathogenic autoreactive Th1 cells. To determine whether a diabetes-associated NOD chromosomal locus (i.e., Idd) was responsible for this defect, LPS-stimulated macrophages from several recombinant congenic inbred mice with Idd loci on a C57BL/6 background or with different combinations of NOD and CBA genomic segments were screened for IL-12p40 production. Only macrophages from the congenic strains containing the Idd4 locus showed IL-12p40 overproduction/expression. Moreover, analysis of IL-12p40 sequence polymorphisms demonstrated that the Idd4 intervals in these strains contained the IL-12p40 allele of the NOD, although further analysis is required to determine whether the IL-12p40 allele itself is responsible for its overexpression. Thus, the non-MHC-associated Idd4 locus appears responsible for IL-12p40 overexpression, which may be a predisposing factor for type 1 diabetes in NOD mice.  相似文献   

5.
NOD.Idd3/5 congenic mice have insulin-dependent diabetes (Idd) regions on chromosomes 1 (Idd5) and 3 (Idd3) derived from the nondiabetic strains B10 and B6, respectively. NOD.Idd3/5 mice are almost completely protected from type 1 diabetes (T1D) but the genes within Idd3 and Idd5 responsible for the disease-altering phenotype have been only partially characterized. To test the hypothesis that candidate Idd genes can be identified by differential gene expression between activated CD4+ T cells from the diabetes-susceptible NOD strain and the diabetes-resistant NOD.Idd3/5 congenic strain, genome-wide microarray expression analysis was performed using an empirical Bayes method. Remarkably, 16 of the 20 most differentially expressed genes were located in the introgressed regions on chromosomes 1 and 3, validating our initial hypothesis. The two genes with the greatest differential RNA expression on chromosome 1 were those encoding decay-accelerating factor (DAF, also known as CD55) and acyl-coenzyme A dehydrogenase, long chain, which are located in the Idd5.4 and Idd5.3 regions, respectively. Neither gene has been implicated previously in the pathogenesis of T1D. In the case of DAF, differential expression of mRNA was extended to the protein level; NOD CD4+ T cells expressed higher levels of cell surface DAF compared with NOD.Idd3/5 CD4+ T cells following activation with anti-CD3 and -CD28. DAF up-regulation was IL-4 dependent and blocked under Th1 conditions. These results validate the approach of using congenic mice together with genome-wide analysis of tissue-specific gene expression to identify novel candidate genes in T1D.  相似文献   

6.
Type I diabetes (T1D) susceptibility is inherited through multiple insulin-dependent diabetes (Idd) genes. NOD.B6 Idd3 congenic mice, introgressed with an Idd3 allele from T1D-resistant C57BL/6 mice (Idd3(B6)), show a marked resistance to T1D compared with control NOD mice. The protective function of the Idd3 locus is confined to the Il2 gene, whose expression is critical for naturally occurring CD4(+)Foxp3(+) regulatory T (nT(reg)) cell development and function. In this study, we asked whether Idd3(B6) protective alleles in the NOD mouse model confer T1D resistance by promoting the cellular frequency, function, or homeostasis of nT(reg) cells in vivo. We show that resistance to T1D in NOD.B6 Idd3 congenic mice correlates with increased levels of IL-2 mRNA and protein production in Ag-activated diabetogenic CD4(+) T cells. We also observe that protective IL2 allelic variants (Idd3(B6) resistance allele) also favor the expansion and suppressive functions of CD4(+)Foxp3(+) nT(reg) cells in vitro, as well as restrain the proliferation, IL-17 production, and pathogenicity of diabetogenic CD4(+) T cells in vivo more efficiently than control do nT(reg) cells. Lastly, the resistance to T1D in Idd3 congenic mice does not correlate with an augmented systemic frequency of CD4(+)Foxp3(+) nT(reg) cells but more so with the ability of protective IL2 allelic variants to promote the expansion of CD4(+)Foxp3(+) nT(reg) cells directly in the target organ undergoing autoimmune attack. Thus, protective, IL2 allelic variants impinge the development of organ-specific autoimmunity by bolstering the IL-2 producing capacity of self-reactive CD4(+) T cells and, in turn, favor the function and homeostasis of CD4(+)Foxp3(+) nT(reg) cells in vivo.  相似文献   

7.
The NOD mouse is an important experimental model for human type 1 diabetes. T cells are central to NOD pathogenesis, and their function in the autoimmune process of diabetes has been well studied. In contrast, although recognized as important players in disease induction, the role of B cells is not clearly understood. In this study we characterize different subpopulations of B cells and demonstrate that marginal zone (MZ) B cells are expanded 2- to 3-fold in NOD mice compared with nondiabetic C57BL/6 (B6) mice. The NOD MZ B cells displayed a normal surface marker profile and localized to the MZ region in the NOD spleen. Moreover, the MZ B cell population developed early during the ontogeny of NOD mice. By 3 wk of age, around the time when autoreactive T cells are first activated, a significant MZ B cell population of adult phenotype was found in NOD, but not B6, mice. Using an F2(B6 x NOD) cross in a genome-wide scan, we map the control of this trait to a region on chromosome 4 (logarithm of odds score, 4.4) which includes the Idd11 and Idd9 diabetes susceptibility loci, supporting the hypothesis that this B cell trait is related to the development of diabetes in the NOD mouse.  相似文献   

8.
The nonobese diabetic (NOD) mouse strain provides a good study model for Sj?gren's syndrome (SS). The genetic control of SS was investigated in this model using different matings, including a (NOD x C57BL/6 (B6))F(2) cross, a (NOD x NZW)F(2) cross, and ((NOD x B6) x NOD) backcross. Multiple and different loci were detected depending on parent strain combination and sex. Despite significant complexity, two main features were prominent. First, the middle region of chromosome 1 (chr.1) was detected in all crosses. Its effect was most visible in the (NOD x B6)F(2) cross and dominated over that of other loci, including those mapping on chr.8, 9, 10, and 16; the effect of these minor loci was observed only in the absence of the NOD haplotype on chr.1. Most critically, the chr.1 region was sufficient to trigger an SS-like inflammatory infiltrate of salivary glands as shown by the study of a new C57BL/6 congenic strain carrying a restricted segment derived from NOD chr.1. Second, several chromosomal regions were previously associated with NOD autoimmune phenotypes, including Iddm (chr.1, 2, 3, 9, and 17, corresponding to Idd5, Idd13, Idd3, Idd2, and Idd1, respectively), accounting for the strong linkage previously reported between insulitis and sialitis, and autoantibody production (chr.10 and 16, corresponding to Bana2 and Bah2, respectively). Interestingly, only two loci were detected in the (NOD x NZW)F(2) cross, on chr.1 in females and on chr.7 in males, probably because of the latent autoimmune predisposition of the NZW strain. Altogether these findings reflect the complexity and heterogeneity of human SS.  相似文献   

9.
Autoreactive T cells clearly mediate the pancreatic beta cell destruction causing type 1 diabetes (T1D). However, studies in NOD mice indicate that B cells also contribute to pathogenesis because their ablation by introduction of an Igmunull mutation elicits T1D resistance. T1D susceptibility is restored in NOD.Igmunull mice that are irradiated and reconstituted with syngeneic bone marrow plus NOD B cells, but not syngeneic bone marrow alone. Thus, we hypothesized some non-MHC T1D susceptibility (Idd) genes contribute to disease by allowing development of pathogenic B cells. Supporting this hypothesis was the finding that unlike those from NOD donors, engraftment with B cells from H2g7 MHC-matched, but T1D-resistant, nonobese-resistant (NOR) mice failed to restore full disease susceptibility in NOD.Igmunull recipients. T1D resistance in NOR mice is mainly encoded within the Idd13, Idd5.2, and Idd9/11 loci. B cells from NOD congenic stocks containing Idd9/11 or Idd5.1/5.2-resistance loci, respectively, derived from the NOR or C57BL/10 strains were characterized by suppressed diabetogenic activity. Immature autoreactive B cells in NOD mice have an impaired ability to be rendered anergic upon Ag engagement. Interestingly, both Idd5.1/5.2 and Idd9/11-resistance loci were found to normalize this B cell tolerogenic process, which may represent a mechanism contributing to the inhibition of T1D.  相似文献   

10.
We have previously proposed that sequence variation of the CD101 gene between NOD and C57BL/6 mice accounts for the protection from type 1 diabetes (T1D) provided by the insulin-dependent diabetes susceptibility region 10 (Idd10), a <1 Mb region on mouse chromosome 3. In this study, we provide further support for the hypothesis that Cd101 is Idd10 using haplotype and expression analyses of novel Idd10 congenic strains coupled to the development of a CD101 knockout mouse. Susceptibility to T1D was correlated with genotype-dependent CD101 expression on multiple cell subsets, including Foxp3(+) regulatory CD4(+) T cells, CD11c(+) dendritic cells, and Gr1(+) myeloid cells. The correlation of CD101 expression on immune cells from four independent Idd10 haplotypes with the development of T1D supports the identity of Cd101 as Idd10. Because CD101 has been associated with regulatory T and Ag presentation cell functions, our results provide a further link between immune regulation and susceptibility to T1D.  相似文献   

11.
When expressed in NOD, but not C57BL/6 (B6) genetic background mice, the common class I variants encoded by the H2g7 MHC haplotype aberrantly lose the ability to mediate the thymic deletion of autoreactive CD8+ T cells contributing to type 1 diabetes (T1D). This indicated some subset of the T1D susceptibility (Idd) genes located outside the MHC of NOD mice interactively impair the negative selection of diabetogenic CD8+ T cells. In this study, using both linkage and congenic strain analyses, we demonstrate contributions from a polymorphic gene(s) in the previously described Idd7 locus on the proximal portion of Chromosome 7 predominantly, but not exclusively, determines the extent to which H2g7 class I molecules can mediate the thymic deletion of diabetogenic CD8+ T cells as illustrated using the AI4 TCR transgenic system. The polymorphic Idd7 region gene(s) appears to control events that respectively result in high vs low expression of the AI4 clonotypic TCR alpha-chain on developing thymocytes in B6.H2g7 and NOD background mice. This expression difference likely lowers levels of the clonotypic AI4 TCR in NOD, but not B6.H2g7 thymocytes, below the threshold presumably necessary to induce a signaling response sufficient to trigger negative selection upon Ag engagement. These findings provide further insight to how susceptibility genes, both within and outside the MHC, may interact to elicit autoreactive T cell responses mediating T1D development in both NOD mice and human patients.  相似文献   

12.
High-resolution mapping and identification of the genes responsible for type 1 diabetes (T1D) has proved difficult because of the multigenic etiology and low penetrance of the disease phenotype in linkage studies. Mouse congenic strains have been useful in refining Idd susceptibility loci in the NOD mouse model and providing a framework for identification of genes underlying complex autoimmune syndromes. Previously, we used NOD and a nonobese diabetes-resistant strain to map the susceptibility to T1D to the Idd4 locus on chromosome 11. Here, we report high-resolution mapping of this locus to 1.4 megabases. The NOD Idd4 locus was fully sequenced, permitting a detailed comparison with C57BL/6 and DBA/2J strains, the progenitors of T1D resistance alleles found in the nonobese diabetes-resistant strain. Gene expression arrays and quantitative real-time PCR were used to prioritize Idd4 candidate genes by comparing macrophages/dendritic cells from congenic strains where allelic variation was confined to the Idd4 interval. The differentially expressed genes either were mapped to Idd4 or were components of the IFN response pathway regulated in trans by Idd4. Reflecting central roles of Idd4 genes in Ag presentation, arachidonic acid metabolism and inflammation, phagocytosis, and lymphocyte trafficking, our combined analyses identified Alox15, Alox12e, Psmb6, Pld2, and Cxcl16 as excellent candidate genes for the effects of the Idd4 locus.  相似文献   

13.
Environmental and genetic factors define the susceptibility of an individual to autoimmune disease. Although common genetic pathways affect general immunological tolerance mechanisms in autoimmunity, the effects of such genes could vary under distinct immune challenges within different tissues. In this study, we demonstrate this by observing that autoimmune type 1 diabetes-protective haplotypes at the insulin-dependent diabetes susceptibility region 10 (Idd10) introgressed from chromosome 3 of C57BL/6 (B6) and A/J mice onto the NOD background increase the severity of autoimmune primary biliary cirrhosis induced by infection with Novosphingobium aromaticivorans, a ubiquitous alphaproteobacterium, when compared with mice having the NOD and NOD.CAST Idd10 type 1 diabetes-susceptible haplotypes. Substantially increased liver pathology in mice having the B6 and A/J Idd10 haplotypes correlates with reduced expression of CD101 on dendritic cells, macrophages, and granulocytes following infection, delayed clearance of N. aromaticivorans, and the promotion of overzealous IFN-γ- and IL-17-dominated T cell responses essential for the adoptive transfer of liver lesions. CD101-knockout mice generated on the B6 background also exhibit substantially more severe N. aromaticivorans-induced liver disease correlating with increased IFN-γ and IL-17 responses compared with wild-type mice. These data strongly support the hypothesis that allelic variation of the Cd101 gene, located in the Idd10 region, alters the severity of liver autoimmunity induced by N. aromaticivorans.  相似文献   

14.
Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces “hitchhiking” (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large “hitchhiking” genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of “hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci.  相似文献   

15.
Genetic control of NKT cell numbers maps to major diabetes and lupus loci   总被引:6,自引:0,他引:6  
Natural killer T cells are an immunoregulatory population of lymphocytes that plays a critical role in controlling the adaptive immune system and contributes to the regulation of autoimmune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the nonobese diabetic (NOD) mouse strain, a well-validated model of type 1 diabetes and systemic lupus erythematosus. In this study, we report the results of a genetic linkage analysis of the genes controlling NKT cell numbers in a first backcross (BC1) from C57BL/6 to NOD.Nkrp1(b) mice. The numbers of thymic NKT cells of 320 BC1 mice were determined by fluorescence-activated cell analysis using anti-TCR Ab and CD1/alpha-galactosylceramide tetramer. Tail DNA of 138 female BC1 mice was analyzed for PCR product length polymorphisms at 181 simple sequence repeats, providing greater than 90% coverage of the autosomal genome with an average marker separation of 8 cM. Two loci exhibiting significant linkage to NKT cell numbers were identified; the most significant (Nkt1) was on distal chromosome 1, in the same region as the NOD mouse lupus susceptibility gene Babs2/Bana3. The second most significant locus (Nkt2) mapped to the same region as Idd13, a NOD-derived diabetes susceptibility gene on chromosome 2.  相似文献   

16.
Among polygenes conferring susceptibility to type 1 diabetes in the NOD mouse, Idd10 on distal chromosome 3 has been shown to be important for disease susceptibility. In this study, we investigated the candidacy of Fcgr1 and Cd101 for Idd10, by congenic mapping and candidate gene sequencing. Among seven NOD-related strains studied, the IIS mouse was found to possess a recombinant Idd10 interval with the same sequence at Fcgr1 as the NOD mouse, but a different sequence at Cd101 from that in the NOD mouse with 10 amino acid substitutions. The frequency of type 1 diabetes in NOD mice congenic for IIS Idd10 (NOD.IISIdd10) was significantly reduced as compared to that in the NOD mouse, despite the presence of the identical Fcgr1 sequence. These data indicate that IIS mice possess a resistant allele at Idd10, and suggest that Cd101, but not Fcgr1, is responsible for the Idd10 effect.  相似文献   

17.
Nonobese diabetic (NOD) mice congenic for C57BL/10 (B10)-derived genes in the Idd9 region of chromosome 4 are highly protected from type 1 diabetes (T1D). Idd9 has been divided into three protective subregions (Idd9.1, 9.2, and 9.3), each of which partially prevents disease. In this study we have fine-mapped the Idd9.1 and Idd9.2 regions, revealing further genetic complexity with at least two additional subregions contributing to protection from T1D. Using the NOD sequence from bacterial artificial chromosome clones of the Idd9.1 and Idd9.2 regions as well as whole-genome sequence data recently made available, sequence polymorphisms within the regions highlight a high degree of polymorphism between the NOD and B10 strains in the Idd9 regions. Among numerous candidate genes are several with immunological importance. The Idd9.1 region has been separated into Idd9.1 and Idd9.4, with Lck remaining a candidate gene within Idd9.1. One of the Idd9.2 regions contains the candidate genes Masp2 (encoding mannan-binding lectin serine peptidase 2) and Mtor (encoding mammalian target of rapamycin). From mRNA expression analyses, we have also identified several other differentially expressed candidate genes within the Idd9.1 and Idd9.2 regions. These findings highlight that multiple, relatively small genetic effects combine and interact to produce significant changes in immune tolerance and diabetes onset.  相似文献   

18.
Nonobese diabetic (NOD) mice, a model for type I diabetes (TID), have reduced numbers of invariant V alpha 14J alpha 18 TCR alpha-chain-positive natural T (iNKT) cells that do not release IL-4 in response to in vivo activation through their Ag receptor. The deficit in iNKT cell number and function is implicated in immune dysregulation and the etiology of TID. Therefore, we reasoned that the genetic determinant(s) that controls iNKT cell number and function might lie within Idd (insulin-dependent diabetes susceptibility locus) regions, which are known to contain TID resistance or susceptibility genes. A systematic analysis of iNKT cell number and function in Idd congenic mice revealed that neither iNKT cell number nor their inability to rapidly secrete IL-4 in response to acute in vivo activation by Ag underlies the mechanism of protection from diabetes in Idd congenic mice. Moreover, the regulation of iNKT cell number and function appears to be under the control of several genes. The most notable of these map to the Idd4, Idd5, Idd9.1, and Idd13 regions of the mouse genome. Together these findings provide a clue to the genetic mechanism(s) underlying iNKT cell deficiency in NOD mice.  相似文献   

19.
Genetic analysis for insulitis in NOD mice   总被引:3,自引:0,他引:3  
Non-obese diabetic (NOD) mice spontaneously develop diabetic signs akin to those of Type I diabetes in man. Insulitis, i.e., lymphocytic infiltration around and into the pancreatic islets is one of the characteristics of such mice. It is also the etiologic pathological lesion in the development of diabetes mellitus in NOD mice. Thus, we chose insulitis as a marker for genetic analysis of the development of diabetes mellitus in NOD mice and clarified the mode of its inheritance. In breeding studies between NOD and C57BL/6J mice, insulitis was not observed in the F1 and (F1 X C57BL/6J) backcross generations, but was found with incidences of 3.9% in females and 1.4% in males in the F2 generation and 23.7% in females and 12.1% in males in the (F1 X NOD) backcross generation. These incidences in the F2 and (F1 X NOD) backcross females corresponded approximately to 1/16 and 1/4 of the incidences of 89.7% in the NOD females, respectively. A similar relationship was observed between the F2 and (F1 X NOD) backcross males and the NOD males. When the gene expressivity of both sexes for a double recessive homozygote was assumed to be the incidences of insulitis in 9-week-old NOD females and males, respectively, the expected numbers of both sexes with and without insulitis in the F2 and backcross generations agreed well with the observed ones. These observations suggest that two recessive genes on independent autosomal chromosomes are necessary for the development of insulitis in NOD mice.  相似文献   

20.
Autoimmune type 1 diabetes (T1D) in humans and NOD mice results from interactions between multiple susceptibility genes (termed Idd) located within and outside the MHC. Despite sharing ~88% of their genome with NOD mice, including the H2(g7) MHC haplotype and other important Idd genes, the closely related nonobese resistant (NOR) strain fails to develop T1D because of resistance alleles in residual genomic regions derived from C57BLKS mice mapping to chromosomes (Chr.) 1, 2, and 4. We previously produced a NOD background strain with a greatly decreased incidence of T1D as the result of a NOR-derived 44.31-Mb congenic region on distal Chr. 4 containing disease-resistance alleles that decrease the pathogenic activity of autoreactive B and CD4 T cells. In this study, a series of subcongenic strains for the NOR-derived Chr. 4 region was used to significantly refine genetic loci regulating diabetogenic B and CD4 T cell activity. Analyses of these subcongenic strains revealed the presence of at least two NOR-origin T1D resistance genes within this region. A 6.22-Mb region between rs13477999 and D4Mit32, not previously known to contain a locus affecting T1D susceptibility and now designated Idd25, was found to contain the main NOR gene(s) dampening diabetogenic B cell activity, with Ephb2 and/or Padi2 being strong candidates as the causal variants. Penetrance of this Idd25 effect was influenced by genes in surrounding regions controlling B cell responsiveness and anergy induction. Conversely, the gene(s) controlling pathogenic CD4 T cell activity was mapped to a more proximal 24.26-Mb region between the rs3674285 and D4Mit203 markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号