首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+) signal to activate Ca(2+)-dependent Cl(-) channels. Cytosolic [Ca(2+)](i) was measured in non-polarized human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Primary human CF and non-CF airway epithelial monolayers as well as Calu-3 monolayers were used to assess anion secretion. In vivo nasal potential difference measurements were performed in non-CF and two different CF mouse (DeltaF508 homozygous and bitransgenic gut-corrected but lung-null) models. Zinc and ATP induced a sustained, reversible, and reproducible increase in cytosolic Ca(2+) in CF and non-CF cells with chemistry and pharmacology most consistent with activation of P2X purinergic receptor channels. P2X purinergic receptor channel-mediated Ca(2+) entry stimulated sustained Cl(-) and HCO(3)(-) secretion in CF and non-CF epithelial monolayers. In non-CF mice, zinc and ATP induced a significant Cl(-) secretory response similar to the effects of agonists that increase intracellular cAMP levels. More importantly, in both CF mouse models, Cl(-) permeability of nasal epithelia was restored in a sustained manner by zinc and ATP. These effects were reversible and reacquirable upon removal and readdition of agonists. Our data suggest that activation of P2X calcium entry channels may have profound therapeutic benefit for CF that is independent of cystic fibrosis transmembrane conductance regulator genotype.  相似文献   

2.
Recent interest in nucleotides and related agents as part of clinical trials in cystic fibrosis (CF) therapy have elicited efforts to identify novel compounds capable of activating transepithelial chloride (Cl(-)) transport in CF cells and tissues. From a library of nucleosides, bases, and other substituted heterocycles, 341 compounds were screened for their ability to activate anion transport in CF cells grown on permeable supports. One compound, SRI 2931, was found to confer prolonged and potent activity when administered to the apical surfaces of CF pancreatic epithelial cells, primary CF nasal epithelial cells, non-CF human colonic epithelial cells, and intact tissue taken from mouse models for CF. Concentrations of SRI 2931 (20 microM), which activated Cl(-) transport, had minimal effect on cell proliferation. SRI 2931 was not calcium (Ca(2+)) or cAMP dependent, suggesting important differences from conventional chloride secretagogues. The compound selectively released ATP from the apical, but not basolateral, surfaces of CF cells grown on permeable supports. The magnitude, longevity, and mechanism of action of the response provide a tool for dissecting pathways of epithelial ATP extracellular signaling and Cl(-) permeability.  相似文献   

3.
Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement.  相似文献   

4.
Cystic fibrosis (CF) is caused by mutations in the gene producing the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a Cl(-) channel. Its dysfunction limits Cl(-) secretion and enhances Na+ absorption, leading to viscous mucus in the airway. Ca2+-activated Cl(-) channels (CaCCs) are coexpressed with CFTR in the airway surface epithelia. Increases in cytosolic Ca(2+) activate the epithelial CaCCs, which provides an alternative Cl(-) secretory pathway in CF. We developed a screening assay and screened a library for compounds that could enhance cytoplasmic Ca2+, activate the CaCC, and increase Cl(-) secretion. We found that spiperone, a known antipsychotic drug, is a potent intracellular Ca2+ enhancer and demonstrated that it stimulates intracellular Ca2+, not by acting in its well-known role as an antagonist of serotonin 5-HT2 or dopamine D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Spiperone activates CaCCs, which stimulates Cl(-) secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro and in CFTR-knockout mice in vivo. In conclusion, we have identified spiperone as a new therapeutic platform for correction of defective Cl(-) secretion in CF via a pathway independent of CFTR.  相似文献   

5.
6.
Aberrant HCO(3)(-) transport is a hallmark of cystic fibrosis (CF) and is associated with aberrant Cl(-)-dependent HCO(3)(-) transport by the cystic fibrosis transmembrane conductance regulator (CFTR). We show here that HCO(3)(-) current by CFTR cannot account for CFTR-activated HCO(3)(-) transport and that CFTR does not activate AE1-AE4. In contrast, CFTR markedly activates Cl(-) and OH(-)/HCO(3)(-) transport by members of the SLC26 family DRA, SLC26A6 and pendrin. Most notably, the SLC26s are electrogenic transporters with isoform-specific stoichiometries. DRA activity occurred at a Cl(-)/HCO(3)(-) ratio > or =2. SLC26A6 activity is voltage regulated and occurred at HCO(3)(-)/Cl(-) > or =2. The physiological significance of these findings is demonstrated by interaction of CFTR and DRA in the mouse pancreas and an altered activation of DRA by the R117H and G551D mutants of CFTR. These findings provide a molecular mechanism for epithelial HCO(3)(-) transport (one SLC26 transporter-electrogenic transport; two SLC26 transporters with opposite stoichiometry in the same membrane domain-electroneutral transport), the CF-associated aberrant HCO(3)(-) transport, and reveal a new function of CFTR with clinical implications for CF and congenital chloride diarrhea.  相似文献   

7.
Cultured normal (N) cystic fibrosis (CF) keratinocytes were evaluated for their Cl(-)-transport properties by patch-clamp-, Ussing chamber- and isotopic efflux-measurements. Special attention was paid to a 32 pS outwardly rectifying Cl- channel which has been reported to be activated upon activation of cAMP-dependent pathways in N, but not in CF cells. This depolarization-induced Cl- channel was found with a similar incidence in N and CF apical keratinocyte membranes. However, activation of this channel in excised patches by protein kinase (PK)-A or PK-C was not successful in either N or CF keratinocytes. Forskolin was not able to activate Cl- channels in N and CF cell-attached patches. The Ca(2+)-ionophore A23187 activated in cell-attached patches a linear 17 pS Cl- channel in both N and CF cells. This channel inactivated upon excision. No relationship between the cell-attached 17 pS and the excised 32 pS channel could be demonstrated. Returning to the measurement of Cl- transport at the macroscopic level, we found that a drastic rise in intracellular cAMP induced by forskolin did in N as well as CF cells not result in a change in the short-circuit current (Isc) or the fractional efflux rates of 36Cl- and 125I-. In contrast, addition of A23187 resulted in an increase of the Isc and in the isotopic anion efflux rates in N and CF cells. We conclude that Cl(-)-transport in cultured human keratinocytes can be activated by Ca2+, but not by cAMP-dependent pathways.  相似文献   

8.
Compounds that enhance either the function or biosynthetic processing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel may be of value in developing new treatments for cystic fibrosis (CF). Previous studies suggested that the herbal extract curcumin might affect the processing of a common CF mutant, CFTR-DeltaF508. Here, we tested the hypothesis that curcumin influences channel function. Curcumin increased CFTR channel activity in excised, inside-out membrane patches by reducing channel closed time and prolonging the time channels remained open. Stimulation was dose-dependent, reversible, and greater than that observed with genistein, another compound that stimulates CFTR. Curcumin-dependent stimulation required phosphorylated channels and the presence of ATP. We found that curcumin increased the activity of both wild-type and DeltaF508 channels. Adding curcumin also increased Cl(-) transport in differentiated non-CF airway epithelia but not in CF epithelia. These results suggest that curcumin may directly stimulate CFTR Cl(-) channels.  相似文献   

9.
Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR?(/)? pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR?(/)? epithelia showed markedly reduced Cl? and HCO?? transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR?(/)? pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl? conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl? and HCO?? in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.  相似文献   

10.
Defective cystic fibrosis (CF) transmembrane conductance regulator (CFTR)-mediated Cl(-) transport across the apical membrane of airway epithelial cells is implicated in the pathophysiology of CF lungs. A strategy to compensate for this loss is to augment Cl(-) transport through alternative pathways. We report here that partial correction of this defect could be attained through the incorporation of artificial anion channels into the CF cells. Introduction of GL-172, a synthetic analog of squalamine, into CFT1 cells increased cell membrane halide permeability. Furthermore, when a Cl(-) gradient was generated across polarized monolayers of primary human airway or Fischer rat thyroid cells in an Ussing chamber, addition of GL-172 caused an increase in the equivalent short-circuit current. The magnitude of this change in short-circuit current was ~30% of that attained when CFTR was maximally stimulated with cAMP agonists. Patch-clamp studies showed that addition of GL-172 to CFT1 cells also increased whole cell Cl(-) currents. These currents displayed a linear current-voltage relationship and no time dependence. Additionally, administration of GL-172 to the nasal epithelium of transgenic CF mice induced a hyperpolarization response to perfusion with a low-Cl(-) solution, indicating restoration of Cl(-) secretion. Together, these results demonstrate that in CF airway epithelial cells, administration of GL-172 is capable of partially correcting the defective Cl(-) secretion.  相似文献   

11.
Cystic fibrosis (CF) patients suffer from a defect in hydration of mucosal membranes due to mutations in the cystic fibrosis transmembrane regulator (CFTR), an apical chloride channel in mucosal epithelia. Disease expression in CF knockout mice is organ specific, varying with the level of expression of calcium activated Cl(-) channels (CLCA). Therefore, restoring transepithelial Cl(-) secretion by augmenting alternate Cl(-) channels, such as CLCA, could be beneficial. However, CLCA-mediated Cl(-) secretion is transient, due in part to the inhibitory effects of myo-inositol 3,4,5,6-tetrakisphosphate [Ins(3,4,5,6)P(4)]. This suggests that antagonists of Ins(3,4,5,6)P(4) could be useful in treatment of CF. We have, therefore, synthesized a series of membrane-permeant Ins(3,4,5,6)P(4) derivatives, carrying alkyl substituents on the hydroxyl groups and screened them for effects on Cl(-) secretion in a human colonic epithelial cell line, T(84). While membrane-permeant Ins(3,4,5,6)P(4) derivatives had no direct effects on carbachol-stimulated Cl(-) secretion, Ins(3,4,5,6)P(4) derivatives, but not enantiomeric Ins(1,4,5,6)P(4) derivatives, reversed the inhibitory effect of Ins(3,4,5,6)P(4) on subsequent thapsigargin activation of Cl(-) secretion. The extent of the antagonistic effect of the Ins(3,4,5,6)P(4) derivatives varied with the position of the alkyl substituents. Derivatives with a cyclohexylidene ketal or a butyl-chain at the 1-position reversed the Ins(3,4,5,6)P(4)-mediated inhibition of Cl(-) secretion by up to 96 and 85%, respectively, whereas butylation of the 1- and 2-position generated a reversal effect of only 65%. Derivatives carrying the butyl chain only at the 2-position showed no antagonistic effect. These data: (1) Support the hypothesis that Ins(3,4,5,6)P(4) stereospecifically inhibits Ca(2+) activated Cl(-) secretion and that Ins(3,4,5,6)P(4) mediates most, if not all of the cholinergic-mediated inhibition of chloride secretion in T(84) cells; (2) Demonstrate Ins(3,4,5,6)P(4)-mediated inhibition can be completely reversed with rationally designed membrane-permeant Ins(3,4,5,6)P(4) antagonists; (3) Demonstrate that a SAR for membrane-permeant Ins(3,4,5,6) P(4) antagonists can be generated and screened in a physiologically relevant cell-based assay; (4) Indicate that Ins(3,4,5,6)P(4) derivatives could serve as a starting point for the development of therapeutics to treat cystic fibrosis.  相似文献   

12.
Tracheal, renal, salivary, and pancreatic epithelial cells from cystic fibrosis [CF; cystic fibrosis transmembrane conductance regulator (CFTR) -/-] and non-CF mice that carry a temperature-sensitive SV40 large T antigen oncogene (ImmortoMouse) were isolated and maintained in culture under permissive conditions (33 degrees C with interferon-gamma). The resultant cell lines have been in culture for >1 year and 50 passages. Each of the eight cell lines form polarized epithelial barriers and exhibit regulated, electrogenic ion transport. The four non-CF cell lines (mTEC1, mCT1, mSEC1, and mPEC1) express cAMP-regulated Cl(-) permeability and cAMP-stimulated Cl(-) secretion. In contrast, the four CFTR -/- cell lines (mTEC1-CF, mCT1-CF, mSEC1-CF, and mPEC1-CF) each lack cAMP-stimulated Cl(-) secretory responses. Ca(2+)-activated Cl(-) secretion is retained in both CF and non-CF cell lines. Thus we have generated genetically well-matched epithelial cell lines from several tissues relevant to cystic fibrosis that either completely lack CFTR or express endogenous levels of CFTR. These cell lines should prove useful for studies of regulation of epithelial cell function and the role of CFTR in cell physiology.  相似文献   

13.
Rectal biopsies from cystic fibrosis (CF) patients show defective cAMP-activated Cl(-) secretion and an inverse response of the short-circuit current (I(sc)) toward stimulation with carbachol (CCh). Alternative Cl(-) channels are found in airway epithelia and have been attributed to residual Cl(-) secretion in CF colon. The aim of the present study was to investigate ion conductances causing reversed I(sc) upon cholinergic stimulation. Furthermore, the putative role of an alternative Ca(2+)-dependent Cl(-) conductance in human distal colon was examined. Cholinergic ion secretion was assessed in the absence and presence of cAMP-dependent stimulation. Transepithelial voltage and I(sc) were measured in rectal biopsies from non-CF and CF individuals by means of a perfused micro-Ussing chamber. Under baseline conditions, CCh induced a positive I(sc) in CF rectal biopsies but caused a negative I(sc) in non-CF subjects. The CCh-induced negative I(sc) in non-CF biopsies was gradually reversed to a positive response by incubating the biopsies in indomethacin. The positive I(sc) was significantly enhanced in CF and was caused by activation of a luminal K(+) conductance, as shown by the use of the K(+) channel blockers Ba(2+) and tetraethylammonium. Moreover, a cAMP-dependent luminal K(+) conductance was detected in CF individuals. We conclude that the cystic fibrosis transmembrane conductance regulator is the predominant Cl(-) channel in human distal colon. Unlike human airways, no evidence was found for an alternative Cl(-) conductance in native tissues from CF patients. Furthermore, we demonstrated that both Ca(2+)- and cAMP-dependent K(+) secretion are present in human distal colon, which are unmasked in rectal biopsies from CF patients.  相似文献   

14.
Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator (DeltaF508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective DeltaF508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and alpha-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the DeltaF508-CFTR defect. Pre-incubation (>or=6h) of CF IB3-1 airway cells with >or=1mM ST7 or ST20 restored the ability of 100microM forskolin to stimulate an (125)I(-) efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl(-) channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the DeltaF508 mutation.  相似文献   

15.
Gene transfer of CFTR cDNA to airway epithelia is a promising approach to treat cystic fibrosis (CF). Most gene transfer vectors use strong viral promoters even though the endogenous CFTR promoter is very weak. To learn whether expressing CFTR at a low level in a fraction of cells would correct Cl(-) transport, we mixed freshly isolated wild-type and CF airway epithelial cells in varying proportions and generated differentiated epithelia. Epithelia with approximately 20% wild-type cells generated approximately 70% the transepithelial Cl(-) current of epithelia containing 100% wild-type cells. These data were nearly identical to those previously obtained with CFTR expressed under control of a strong promoter in a CF epithelial cell line. We also tested high level CFTR expression using the very strong cytomegalovirus (CMV) promoter as well as the cytokeratin-18 (K18) promoter. In differentiated airway epithelia, the CMV promoter generated 50-fold more transgene expression than the K18 promoter, but the K18 promoter generated more transepithelial Cl(-) current at high vector doses. Using functional studies, we found that with marked overexpression, some CFTR channels were present in the basolateral membrane where they shunted Cl(-) flow, thereby reducing net transepithelial Cl(-) transport. These results suggest that very little CFTR is required in a fraction of CF epithelial cells to complement Cl(-) transport because transepithelial Cl(-) flow is limited at the basolateral membrane. Thus they suggest a broad leeway in promoter strength for correcting the CF gene transfer, although at very high expression levels CFTR may be mislocalized to the basolateral membrane.  相似文献   

16.
The cystic fibrosis (CF) phenotype is characterized by a regulatory defect in Cl- permeability in epithelia. A gene (250,000 base pairs) that is associated with this autosomal genetic disorder has been identified. To determine the cellular function of the recently cloned gene product, the cystic fibrosis transmembrane conductance regulator (CFTR), we have produced antibody against a synthetic peptide deduced from the CFTR cDNA sequence corresponding to positions 505-511. This site includes phenylalanine 508, the deletion of which is the most commonly expressed mutation in CF. We sought to determine whether the anti-CFTR505-511 peptide antibody could modulate the activation of the volume-sensitive, Ca(2+)-dependent, as well as the cAMP-dependent Cl- conductances present in the Cl(-)-secreting human colonic T84 cell line. Affinity-purified anti-CFTR505-511 antibody was introduced into the cytoplasm of individual T84 cells and its function studied using the whole-cell patch-clamp technique. Although cAMP-dependent Cl- current activation was inhibited in cells perfused with the anti-CFTR505-511 peptide antibody, Ca(2+)-dependent anion current activation remained unaffected. Chloride current activation, which accompanies cellular swelling, was partially attenuated in anti-CFTR505-511 antibody-loaded cells as compared with control cells perfused with either saline or irrelevant antibody. These results further support a role for CFTR in anion transport in epithelial cells and suggest its possible involvement in a number of anion transport pathways in chloride secretory epithelia.  相似文献   

17.
We investigated how cystic fibrosis (CF) alters the relationship between Cl(-) and mucin secretion in cultures of non-CF and CF human tracheobronchial gland mucous (HTGM and CFTGM, respectively) cells. Biochemical studies showed that HTMG cells secreted typical airway mucins, and immunohistochemical studies showed that these cells expressed MUC1, MUC4, MUC5B, MUC8, MUC13, MUC16, and MUC20. Effects of cumulative doses of methacholine (MCh), phenylephrine (Phe), isoproterenol (Iso), and ATP on mucin and Cl(-) secretion were studied on HTGM and CFTGM cultures. Baseline mucin secretion was not significantly altered in CFTGM cells, and the increases in mucin secretion induced by mediators were unaltered (Iso, Phe) or slightly decreased (MCh, ATP). Across mediators, there was no correlation between the maximal increases in Cl(-) secretion and mucin secretion. In HTGM cells, the Cl(-) channel blocker, diphenylamine-2-carboxylic acid, greatly inhibited Cl(-) secretion but did not alter mucin release. In HTGM cells, mediators (10(-5) M) increased mucin secretion in the rank order ATP > Phe = Iso > MCh. They increased Cl(-) secretion in the sequence ATP > MCh ≈ Iso > Phe. The responses in Cl(-) secretion to MCh, ATP, and Phe were unaltered by CF, but the response to Iso was greatly reduced. We conclude that mucin secretion by cultures of human tracheobronchial gland cells is independent of Cl(-) secretion, at baseline, and is unaltered in CF; that the ratio of Cl(-) secretion to mucus secretion varies markedly depending on mediator; and that secretions induced by stimulation of β-adrenergic receptors will be abnormally concentrated in CF.  相似文献   

18.
Multi-ion pore behaviour has been identified in many Cl(-) channel types but its biophysical significance is uncertain. Here, we show that mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel that disrupt anion-anion interactions within the pore are associated with drastically reduced single channel conductance. These results are consistent with models suggesting that rapid Cl(-) permeation in CFTR results from repulsive ion-ion interactions between Cl(-) ions bound concurrently inside the pore. Naturally occurring mutations that disrupt these interactions can result in cystic fibrosis.  相似文献   

19.
The number of complex cystic fibrosis transmembrane conductance regulator (CFTR) genotypes identified as having double-mutant alleles with two mutations inherited in cis has been growing. We investigated the structure-function relationships of a severe cystic fibrosis (CF)-associated double mutant (R347H-D979A) to evaluate the contribution of each mild mutation to the phenotype. CFTR mutants expressed in HeLa cells were analyzed for protein biosynthesis and Cl(-) channel activity. Our data show that R347H is associated with mild defective Cl(-) channel activity and that the D979A defect leads to misprocessing. The mutant R347H-D979A combines both defects for a dramatic decrease in Cl(-) current. To decipher the molecular mechanism of this phenotype, single and double mutants with different charge combinations at residues 347 and 979 were constructed as charged residues were involved in this complex genotype. These studies revealed that residue 979, located in the third cytoplasmic loop, is critical for CFTR processing and Cl(-) channel activity highlighting the role of charged residues. These results have also important implications for CF, as they show that two mutations in cis can act in concert to alter dramatically CFTR function contributing to the wide phenotypic variability of CF disease.  相似文献   

20.
Malfunction of airway submucosal glands contributes to the pathology of cystic fibrosis (CF), and cell cultures of CF human airway glands show defects in Cl(-) and water transport. Recently, a transgenic pig model of CF (the CF pig) has been developed. Accordingly, we have developed cell cultures of pig airway gland epithelium for use in investigating alterations in gland function in CF. Our cultures form tight junctions (as evidenced by high transepithelial electrical resistance) and show high levels of active anion secretion (measured as amiloride-insensitive short-circuit current). In agreement with recent results on human airway glands, neurohumoral agents that elevate intracellular Ca(2+) potently stimulated anion secretion, while elevation of cAMP was comparatively ineffective. Our cultures express lactoferrin and lysozyme (serous gland cell markers) and MUC5B (the main mucin of airway glands). They are, therefore, potentially useful in determining if CF-related alterations in anion transport result in altered secretion of serous cell antimicrobial agents or mucus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号