首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency that is caused by a functional defect of the NADPH oxidase of phagocytes, and that leads to severe recurrent infections. CGD results from the absence or the dysfunction of various components of NADPH oxidase, and autosomal recessive CGD with the lack of p67-phox (A67 CGD) is the rarest form of the disease. Identifying familiar mutations in subjects with A67 CGD provides the most reliable method of detecting carriers and is the basis for prenatal diagnosis. In the present study, we report the detailed characterization of the first duplication in the p67-phox gene identified in a 30-year-old patient affected by systemic aspergillosis attributable to p67-phox deficiency. We show that this new mutation involving exons 9 and 10 is the result of a tandem duplication of approximately 1.1 kb, which resulted from the juxtaposition of intron 8 to intron 10. We have sequenced both the junction fragment of this duplication and the corresponding wild-type regions and have found that the breakpoint regions in intron 8 and in intron 10 show limited homology. Our result suggests that this interchange arose as an illegitimate recombination event. As in other non-homologous rearrangements previously reported, the duplication breakpoints are located within the sequence motif 5'-CCAG-3' and its complement 5'-CTGG-3'.  相似文献   

2.
Chronic granulomatous disease (CGD) is due to a functional defect of the O2- generating NADPH oxidase of phagocytes. Epstein-Barr-virus-immortalized B lymphocytes express all the constituents of oxidase with activity 100 times less than that of neutrophils. As in neutrophils, oxidase activity of Epstein-Barr-virus-immortalized B lymphocytes was shown to be defective in the different forms of CGD; these cells were used as a model for the complementation studies of two p67-phox-deficient CGD patients. Reconstitution of oxidase activity was performed in vitro by using a heterologous cell-free assay consisting of membrane-suspended or solubilized and purified cytochrome b558 that was associated with cytosol or with the isolated cytosolic-activating factors (p67-phox, p47-phox, p40-phox) from healthy or CGD patients. In p67-phox-deficient CGD patients, two cytosolic factors are deficient or missing: p67-phox and p40-phox. Not more than 20% of oxidase activity was recovered by complementing the cytosol of p67-phox-deficient patients with recombinant p67-phox. On the contrary, a complete restoration of oxidase activity was observed when, instead of cytosol, the cytosolic factors were added in the cell-free assay after isolation in combination with cytochrome b558 purified from neutrophil membrane. Moreover, the simultaneous addition of recombinant p67-phox and recombinant p40-phox reversed the previous complementation in a p40-phox dose-dependent process. These results suggest that in the reconstitution of oxidase activity, p67-phox is the limiting factor; the efficiency of complementation depends on the membrane tissue and the cytosolic environment. In vitro, the transition from the resting to the activated state of oxidase, which results from assembling, requires the dissociation of p40-phox from p67-phox for efficient oxidase activity. In the process, p40-phox could function as a negative regulatory factor and stabilize the resting state.  相似文献   

3.
Activated human polymorphonuclear neutrophils (PMNs) convert molecular oxygen into superoxide anion, a process known as the respiratory burst, through the activity of a latent multicomponent NADPH-dependent oxidase. Components of this respiratory burst oxidase include the membrane-bound cytochrome b558 and the cytosolic factors p47-phox and p67-phox. We initiated these studies based on three observations: 1) that stimulation of PMN oxidase activity is associated with translocation of the cytosolic oxidase components to the plasma membrane; 2) that p47-phox is phosphorylated during PMN activation and that there is a sequential relationship between phosphorylation of p47-phox in the cytosol and appearance of the phosphoprotein in the membran; and 3) that the predicted amino acid sequences of p47-phox and of p67-phox contain regions of homology to the SH3 or A domain of the src family of tyrosine kinases, a region found in a variety of proteins which interact with the cytoskeleton or the subplasmalemmal cytoskeleton. Thus the purpose of our studies was to examine the role of protein kinase C (PKC)-dependent phosphorylation in the stimulus-induced association of p47-phox and p67-phox with the plasma membrane and the cytoskeleton. Using the PKC activator phorbol myristate acetate (PMA) as the agonist, we found that activation of the respiratory burst oxidase was associated with translocation of cytosolic p47-phox and p67-phox to the plasma membrane as well as redistribution of p47-phox to the Triton-insoluble cytoskeleton. Furthermore, the PKC inhibitor staurosporine inhibited phosphorylation of p47-phox, interrupted the redistribution of cytosolic oxidase factors, and blocked PMA-induced generation of superoxide anion. Taken together these results indicate that PKC-dependent phosphorylation of p47-phox correlates with association of p47-phox with the cytoskeleton and with translocation of p47-phox and p67-phox to the plasma membrane, with the ensuing assembly of an active superoxide-generating NADPH-dependent oxidase.  相似文献   

4.
Chronic granulomatous disease (CGD) is a group of inherited disorders of host defense caused by a mutation in any of the four components of phagocyte NADPH oxidase, namely gp91-, p22-, p47-, and p67-phox. We have made a precise statistical analysis of 229 registered patients from 195 families in Japan and mutation analysis of 28 and 5 independent patients, respectively, with gp91- and p22-phox deficiency. The gp91- and p22-phox proteins form the membrane cytochrome b558, which plays important roles in the assembly of the active oxidase and electron-transfer reaction, and the lesions in either subunit account for more than 80% of cases. The ratio of male to female patients was 6.6/1, the incidence was calculated to be about 1 out of 220,000 birth, and the life expectancy of the patients born in the 1970s was estimated to be 25-30 years old. For the X-linked gp91-phox deficiency, we found five missense and nine nonsense mutations, seven deletions, three insertions, and four splice site mutations, which included the following novel mutations: four missense, five nonsense, six deletions, one insertion, and two splice site abnormalities. With regard to p22-phox deficiency, two homozygous nonsense mutations and one homozygous deletion, a missense mutation together with a splice site mutation, and two different missense mutations were found. These mutations have not been reported before. Based on the present and reported data from Japan, we discuss the molecular defects of the disease and the difference in statistics between western countries and Japan.  相似文献   

5.
Two cytosolic proteins, p47-phox and p67-phox, have been shown to be essential components of the NADPH-dependent oxidase of human neutrophils, although the specific role of each of these proteins in the multicomponent electron transport complex is undetermined. The superoxide-generating activity of this oxidase can be reproduced in a cell-free system, combining cytosol and membranes from unstimulated neutrophils in the presence of fatty acid and NADPH. In the present studies, cytosol was treated with myristic acid, arachidonic acid, or sodium dodecyl sulfate in the absence of membranes and the resultant precipitate collected by centrifugation and analyzed. Both p47-phox and p67-phox precipitated in the presence of fatty acid. However, neither FAD nor FMN was localized in the precipitates, even though substantial amounts of p47-phox and p67-phox precipitated. These results suggest that neither p47-phox nor p67-phox is a flavoprotein and that neither, therefore, is the oxidase component which accepts electrons from NADPH.  相似文献   

6.
Abstract

We present an up-to-date insight into the function of NADPH oxidase in human neutrophils, the signalling pathways involved in activation of this enzyme and the process of association of its components with the cytoskeleton. We also discuss the functional implications of morphological studies revealing localization of the sites of NADPH oxidase activity. An original model of the process of superoxide (O2) production in human neutrophils is shown. Organization of NADPH oxidase is associated with several components. Upon stimulation, tri-phox cytosolic components of NADPH oxidase (p40-phox, p47-phox and p67-phox) bind to actin filaments. This process involves other actin-binding proteins, such as cofilin and coronin. Activated protein kinase C, translocated from the plasma membrane, phosphorylates cytosolic components at a scaffold of cytoskeleton. Subsequently, p40-phox, responsible for maintaining the resting state of NADPH oxidase, is separated from other two cytosolic phox proteins following an attachment of the active form of small GTP-binding protein Rac to p67-phox. Cytosolic duo-phox proteins (p47-phox and p67-phox) conjugate with membrane components (gp91-phox, p22-phox and Rap1a) of NADPH oxidase residing within membranes of intracellular compartments. This chain of events triggers production of O2. Then, oxidant-producing intracellular compartments associate with the plasma membrane. Eventually, intracellularly produced O2 is released to the extracellular environment through the orifice formed by fusion of oxidant-producing compartments with the plasma membrane. Intracellular movement of the oxidant-producing compartments may be regulated by myosin light chain kinase. The review emphasizes that functional assembly of NADPH oxidase and, therefore, generation of O2 is accomplished essentially within the intracellular compartments. Upon neutrophil stimulation, intracellularly generated O2 is transported to the plasma membrane to be released and to ensure host defense against infection.  相似文献   

7.
We present an up-to-date insight into the function of NADPH oxidase in human neutrophils, the signalling pathways involved in activation of this enzyme and the process of association of its components with the cytoskeleton. We also discuss the functional implications of morphological studies revealing localization of the sites of NADPH oxidase activity. An original model of the process of superoxide (O2*-) production in human neutrophils is shown. Organization of NADPH oxidase is associated with several components. Upon stimulation, tri-phox cytosolic components of NADPH oxidase (p40-phox, p47-phox and p67-phox) bind to actin filaments. This process involves other actin-binding proteins, such as cofilin and coronin. Activated protein kinase C, translocated from the plasma membrane, phosphorylates cytosolic components at a scaffold of cytoskeleton. Subsequently, p40-phox, responsible for maintaining the resting state of NADPH oxidase, is separated from other two cytosolic phox proteins following an attachment of the active form of small GTP-binding protein Rac to p67-phox. Cytosolic duo-phox proteins (p47-phox and p67-phox) conjugate with membrane components (gp91-phox, p22-phox and Rapla) of NADPH oxidase residing within membranes of intracellular compartments. This chain of events triggers production of O2*-. Then, oxidant-producing intracellular compartments associate with the plasma membrane. Eventually, intracellularly produced O2*- is released to the extracellular environment through the orifice formed by fusion of oxidant-producing compartments with the plasma membrane. Intracellular movement of the oxidant-producing compartments may be regulated by myosin light chain kinase. The review emphasizes that functional assembly of NADPH oxidase and, therefore, generation of O2*- is accomplished essentially within the intracellular compartments. Upon neutrophil stimulation, intracellularly generated O2*- is transported to the plasma membrane to be released and to ensure host defense against infection.  相似文献   

8.
Human neutrophil respiratory burst oxidase (NADPH-oxidase) activity can be reconstituted in a cell-free system consisting of plasma membrane, cytosol and an anionic amphiphile [e.g., sodium dodecyl sulfate (SDS) or arachidonate]. Herein, we report reconstitution of oxidase activity using isolated neutrophil plasma membrane together with purified recombinant p47-phox and p67-phox which had been produced using a baculovirus expression system. Activity required an anionic amphiphile (SDS or arachidonate) and was potentiated by diacylglycerol and GTP gamma S. Serial washes of the plasma membrane failed to affect its ability to reconstitute activity, indicating that a dissociable membrane component was not present. The Km for NADPH, 43 microM, was the same as that determined using cytosol in place of recombinant factors. The EC50 values for p47-phox and p67-phox under optimal activation conditions were 220 nM and 80 nM, respectively, indicating a relatively high affinity of these components in an activation complex. Since neither cytosolic component contains a nucleotide binding consensus sequence, these data indicate that the NADPH binding component of the oxidase resides in the plasma membrane.  相似文献   

9.
Superoxide production by phagocytic blood cells involves assembly of an active NADPH oxidase complex from components found both in membrane and cytosolic locations in resting cells. We recently cloned cDNAs encoding two cytosolic components (p47-phox and p67-phox) of the oxidase that are deficient in distinct forms of autosomal recessive chronic granulomatous disease. The precise roles of p47-phox and p67-phox were explored further using purified factors produced in large quantities using recombinant baculoviruses to infect cultured Sf9 insect cells. Neither p47-phox nor p67-phox are thought to represent the flavoprotein components of the oxidase, since neither of the purified recombinant factors contained or bound FAD. Recombinant p47-phox and p67-phox are capable of restoring the deficient cytosol from chronic granulomatous disease patient neutrophils to nearly normal levels in a cell-free reconstitution system. Both p47-phox and p67-phox, used together in the absence of neutrophil cytosol, are incapable of supporting cell free production of superoxide, confirming the involvement of other soluble factor(s) in the assembly of an active oxidase in vitro.  相似文献   

10.
T Xing  V J Higgins    E Blumwald 《The Plant cell》1997,9(2):249-259
The effect of race-specific elicitors on NADPH oxidase was examined in vivo by treating tomato cells with elicitor-containing intercellular fluids prepared from infected tomato leaves inoculated with specific Cladosporium fulvum races. Treatment of Cf-4 or Cf-5 cells with intercellular fluids from incompatible but not from compatible races of C. fulvum increased oxidase activity and the amount of p67-phox, p47-phox, and rac2 in the plasma membrane. Comparison of these three components in the cytosol and plasma membrane indicated that elicitors promoted the translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells carrying the appropriate resistance gene. Protein kinase C activators and inhibitors did not affect enzyme activity or the binding of these three components to the plasma membrane. In contrast, staurosporine, calmodulin antagonists, and EGTA inhibited elicitor-induced oxidase activity and the translocation of the cytosolic components. The assembly process involves a Ca(2+)-dependent protein kinase that catalyzes the phosphorylation of p67-phox and p47-phox, facilitating their translocation to the plasma membrane. Our data suggest that although both plants and animals share common elements in eukaryotic signal transduction, the involvement of different protein kinases mediating the activation of phosphorylation of p67-phox and p47-phox may reflect the unique spatial and temporal distribution of signal transduction pathways in plants.  相似文献   

11.
We previously reported that primary cultures of guinea pig gastric pit cells expressed all of the phagocyte NADPH oxidase components (gp91-, p22-, p67-, p47-, and p40-phox) and could spontaneously release superoxide anion (O(2)(-)). We demonstrate here that pit cells express a nonphagocyte-specific gp91-phox homolog (Mox1) but not gp91-phox. Inclusion of catalase significantly inhibited [(3)H]thymidine uptake during the initial 2 days of culture. Pit cells, matured on day 2, slowly underwent spontaneous apoptosis. Scavenging O(2)(-) and related oxidants by superoxide dismutase plus catalase or N-acetyl cysteine (NAC) and inhibiting Mox1 oxidase by diphenylene iodonium activated caspase 3-like proteases and markedly enhanced chromatin condensation and DNA fragmentation. This accelerated apoptosis was completely blocked by a caspase inhibitor, z-Val-Ala-Asp-CH(2)F. Mox1-derived reactive oxygen intermediates constitutively activated nuclear factor-kappaB, and inhibition of this activity by nuclear factor-kappaB decoy oligodeoxynucleotide accelerated their spontaneous apoptosis. These results suggest that O(2)(-) produced by the pit cell Mox1 oxidase may play a crucial role in the regulation of their spontaneous apoptosis as well as cell proliferation.  相似文献   

12.
Paclet MH  Coleman AW  Vergnaud S  Morel F 《Biochemistry》2000,39(31):9302-9310
NADPH oxidase activity depends on the assembly of the cytosolic activating factors, p67-phox, p47-phox, p40-phox, and Rac with cytochrome b(558). The transition from an inactive to an active oxidase complex induces the transfer of electrons from NADPH to oxygen through cytochrome b(558). The assembly of oxidase complex was studied in vitro after reconstitution in a heterologous cell-free assay by using true noncontact mode atomic force microscopy. Cytochrome b(558) was purified from neutrophils and Epstein-Barr virus-immortalized B lymphocytes and incorporated into liposomes. The effect of protein glycosylation on liposome size and oxidase activity was investigated. The liposomes containing the native hemoprotein purified from neutrophils had a diameter of 146 nm, whereas after deglycosylation, the diameter was reduced to 68 nm, although oxidase activity was similar in both cases. Native cytochrome b(558) was used after purification in reconstitution experiments to investigate the topography of NADPH oxidase once it was assembled. For the first time, atomic force microscopy illustrated conformational changes of cytochrome b(558) during the transition from the inactive to the active state of oxidase; height measurements allow the determination of a size of 4 nm for the assembled complex. In the processes that were studied, p67-phox displayed a critical function; it was shown to be involved in both assembly and activation of oxidase complex while p47-phox proceeded as a positive effector and increased the affinity of p67-phox with cytochrome b(558), and p40-phox stabilizes the resting state. The results suggest that although an oligomeric structure of oxidase machinery has not been demonstrated, allosteric regulation mechanisms may be proposed.  相似文献   

13.
The superoxide-generating NADPH oxidase system in phagocytes consists of at least membrane-associated cytochrome b558 and three cytosolic components named SOCI/NCF-3/sigma 1/C1, SOCII/NCF-1/p47-phox, and SO-CIII/NCF-2/p67-phox. p47-phox and p67-phox were isolated, and their primary structures were determined, but SOCI has not been well characterized. In the present study, we first purified SOCI to homogeneity from the cytosol fraction of the differentiated HL-60 cells. The purified SOCI was a small GTP-binding protein (G protein) with a M(r) of about 22,000. The guanosine 5'-(3-O-thio)triphosphate-bound form, but not the GDP-bound form, of this small G protein showed the SOCI activity. The partial amino acid sequence of SOCI thus far determined was identical to the amino acid sequence deduced from the cDNA encoding rac2 p21. None of the purified small G proteins, including Ki-ras p21, smg p21B/rap1B p21, rhoA p21, and rac1 p21, showed the SOCI activity. These results indicate that SOCI is a small G protein very similar, if not identical, to rac2 p21. The GDP/GTP exchange reaction of SOCI was stimulated and inhibited by stimulatory and inhibitory GDP/GTP exchange proteins for small G proteins, named smg GDS and rho GDI, respectively. The NADPH oxidase activity was also stimulated and inhibited by smg GDS and rho GDI, respectively. These results indicate that the superoxide-generating NADPH oxidase system is regulated by both smg GDS and rho GDI through rac2 p21 or the rac2-related small G protein in phagocytes.  相似文献   

14.
15.
16.
Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency disease that leads to severe recurrent infections. CGD is caused by defects in the phagocyte NADPH oxidase, a multiprotein enzyme that reduces oxygen to superoxide, a precursor of microbicidal oxidants. Less than 6% of CGD patients have an autosomal recessive form of the disease caused by mutations in NCF-2. This gene encodes p67-phox, a cytosolic oxidase subunit that associates with membrane-bound flavocytochrome b558 and regulates electron transfer. We studied six patients from five families with p67-phox deficiency and identified seven different mutant alleles. Patients from three of the kindreds were homozygous for their respective mutation, although the parents of only one family were known to be related. Five of the mutations have not previously been identified: (1) a missense mutation (383C-->T) in exon 5, (2) a nonsense mutation (196C-->T) in exon 3, (3) a missense mutation (230G-->A) in exon 3, (4) a nonsense mutation (298C-->T) in exon 4, and (5) a dinucleotide deletion (835-836 AC) from exon 9. Phagocytes from each of the patients analyzed failed to generate a measurable respiratory burst and had no detectable p67-phox protein. Our results further demonstrate that there is great heterogeneity among the mutations in p67-phox-deficient CGD patients, with no evidence for mutational hot-spots or a founder effect. Our data also support the hypothesis that the stability of p67-phox is particularly sensitive to missense mutations that cause amino acid substitutions within its N-terminal domain. In contrast, mutations predicting single amino acid changes elsewhere in the protein generally represent benign polymorphisms.  相似文献   

17.
18.
A sensitive and specific chemiluminescence (CL) method with bacterial luciferase was adapted for accurate measurement of the flavins FAD and FMN in the membrane and cytosolic fractions of neutrophils prepared from pig and human blood. The FAD and FMN contents (FAD/FMN = 100:2) in the membranes were essentially the same in resting (R) and myristate-stimulated (S) cells, although O2(-)-generation was markedly enhanced exclusively in S membranes. The O2(-)-forming activity of S samples remained unchanged or even increased after washing the membranes with buffer, although one-third of the FAD was lost during washing (a decrease from 140 to 95 pmol/10(8) cell-equivalent (CE) during washing). The cytosol is known to contain at least three components that are essential for O2- production (p47-phox, p67-phox, and a G-protein), and that are translocated to membranes upon activation, but its flavin content was one tenth of that of the membranes. The cytosol was treated with fatty acids in the absence of membranes to induce substantial precipitation of p47-phox, p67-phox and a protein of 32 kDa. No difference relative to a solvent-control was noted in the low flavin content of the precipitate indicating that these cytosolic components are not flavoproteins. These results do not support the possibility of translocation of a cytosolic flavoprotein to the membrane upon activation of the respiratory burst.  相似文献   

19.
20.
Activation of NADPH oxidase in Alzheimer's disease brains   总被引:5,自引:0,他引:5  
The present study is the first to show that superoxide (O(-)(2)) forming NADPH oxidase is activated in Alzheimer's disease (AD) brains by demonstrating the marked translocation of the cytosolic factors p47-phox and p67-phox to the membrane. In conjunction with a recent in vitro study showing that amyloid beta activates O(-)(2) forming NADPH oxidase in microglia, where these phox proteins are localized in this study, the present results suggest that, in AD, NADPH oxidase is activated in microglia, resulting in the formation of reactive oxygen species which can be toxic to neighboring neurons in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号