首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indole-3-carbinol (I3C), a dietary compound found in cruciferous vegetables, induces a robust inhibition of CDK2 specific kinase activity as part of a G1 cell cycle arrest of human breast cancer cells. Treatment with I3C causes a significant shift in the size distribution of the CDK2 protein complex from an enzymatically active 90 kDa complex to a larger 200 kDa complex with significantly reduced kinase activity. Co-immunoprecipitations revealed an increased association of both a 50 kDa cyclin E and a 75 kDa cyclin E immunoreactive protein with the CDK2 protein complex under I3C-treated conditions, whereas the 90 kDa CDK2 protein complexes detected in proliferating control cells contain the lower molecular mass forms of cyclin E. I3C treatment caused no change in the level of CDK2 inhibitors (p21, p27) or in the inhibitory phosphorylation states of CDK2. The effects of I3C are specific for this indole and not a consequence of the cell cycle arrest because treatment of MCF-7 breast cancer cells with either the I3C dimerization product DIM or the anti-estrogen tamoxifen induced a G1 cell cycle arrest with no changes in the associated cyclin E or subcellular localization of the CDK2 protein complex. Taken together, our results have uncovered a unique effect of I3C on cell cycle control in which the inhibition of CDK2 kinase activity is accompanied by selective alterations in cyclin E composition, size distribution, and subcellular localization of the CDK2 protein complex.  相似文献   

2.
3.
We examined the functional role of the phosphatidylinositol 3'-kinase pathway in the growth and survival of cell lines of T-cell origin. Pharmacological inhibition of PI3'-kinase using LY294002 resulted in apoptosis of acute lymphoblastic T-cell leukemia (T-ALL) cell lines including CEM, Jurkat, and MOLT-4. On the other hand, the cutaneous T-cell lymphoma cell line HUT-78 was found to be refractory to LY294002- inducible apoptosis. Sensitivity or resistance to pharmacological inhibitors of PI3'-kinase correlated with tumor suppressor PTEN gene expression, as sensitive T-ALL cells do not express PTEN and have high level of activated AKT, in contrast to HUT-78 cells. Our data demonstrate that inhibition of PI3'-kinase results in dephosphorylation of AKT and partial inhibition of Bcl-xL expression in T-ALL cells, but not in HUT-78 cells. Interestingly, HUT-78 cells were also found to express higher levels of Bcl-xL protein as compared to T-ALL cells. Inhibition of PI3'-kinase also induces release of cytochrome c from mitochondria and activation of caspase-3 and PARP in all T-ALL cell lines tested, but not in HUT-78 cells. Taken altogether, our data demonstrate that the PI3'-kinase/AKT pathway plays a major role in the growth and survival of PTEN-null T-ALL cells, and identify this cascade as promising target for therapeutic intervention in acute T-cell leukemias.  相似文献   

4.
Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome.  相似文献   

5.
Nasopharyngeal carcinoma is a common malignant tumor in the head and neck. Because of frequent recurrence and distant metastasis which are the main causes of death, better treatment is needed. Indole-3-carbinol (I3C), a natural phytochemical found in the vegetables of the cruciferous family, shows anticancer effect through various signal pathways. I3C induces G1 arrest in NPC cell line with downregulation of cell cycle-related proteins, such as CDK4, CDK6, cyclin D1 and pRb. In vivo, nude mice receiving I3C protectively or therapeutically exhibited smaller tumors than control group after they were inoculated with nasopharyngeal carcinoma cells. The expression of CDK4, CDK6, cyclin D1 and pRb in preventive treatment group and drug treatment group both decreased compared with the control group. We conclude that I3C can inhibit the growth of NPC in vitro and in vivo by suppressing the expression of CDK and cyclin families. The drug was safe and had no toxic effects on normal tissues and organs.  相似文献   

6.
The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1) induces leukemia in transgenic mice and permanent T-cell growth in vitro. In transformed lymphocytes, it acts as an essential growth factor. Tax stimulates the cell cycle in the G(1) phase by activating the cyclin-dependent kinase (CDK) CDK4 and CDK6 holoenzyme complexes. Here we show that Tax directly interacts with CDK4. This binding to CDK4 was specific, since Tax did not bind to either CDK2 or CDK1. The interaction with CDK4/cyclin D complexes was observed in vitro, in transfected fibroblasts, in HTLV-1-infected T cells, and in adult T-cell leukemia-derived cultures. Binding studies with several point and deletion mutants indicated that the N terminus of Tax mediates the interaction with CDK4. The Tax/CDK complex represented an active holoenzyme which capably phosphorylates the Rb protein in vitro and is resistant to repression by the inhibitor p21(CIP). Binding-deficient Tax mutants failed to activate CDK4, indicating that direct association with Tax is required for enhanced kinase activity. Tax also increased the association of CDK4 with its positive cyclin regulatory subunit. Thus, protein-protein contact between Tax and the components of the cyclin D/CDK complexes provides a further mechanistic explanation for the mitogenic and immortalizing effects of this HTLV-1 oncoprotein.  相似文献   

7.
The cell cycle in mammalian cells is regulated by a series of cyclins and cyclin-dependent kinases (CDKs). The G1/S checkpoint is mainly dictated by the kinase activities of the cyclin D-CDK4 and/or cyclin D-CDK6 complex and the cyclin E-CDK2 complex. These G1 kinases can in turn be regulated by cell cycle inhibitors, which may cause the cells to arrest at the G1 phase. In T-cell hybridomas, addition of anti-T-cell receptor antibody results not only in G1 arrest but also in apoptosis. In searching for a protein(s) which might interact with Nur77, an orphan steroid receptor required for activation-induced apoptosis of T-cell hybridomas, we have cloned a novel human and mouse CDK inhibitor, p19. The deduced p19 amino acid sequence consists of four ankyrin repeats with 48% identity to p16. The human p19 gene is located on chromosome 19p13, distinct from the positions of p18, p16, and p15. Its mRNA is expressed in all cell types examined. The p19 fusion protein can associate in vitro with CDK4 but not with CDK2, CDC2, or cyclin A, B, E, or D1 to D3. Addition of p19 protein can lead to inhibition of the in vitro kinase activity of cyclin D-CDK4 but not that of cyclin E-CDK2. In T-cell hybridoma DO11.10, p19 was found in association with CDK4 and CDK6 in vivo, although its association with Nur77 is not clear at this point. Thus, p19 is a novel CDK inhibitor which may play a role in the cell cycle regulation of T cells.  相似文献   

8.
9.
We have previously characterized the effects of 2,6-diisopropylphenyl–docosahexaenoamide (DIP–DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP–DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP–DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP–DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP–DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP–DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP–DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.  相似文献   

10.
11.
《FEBS letters》2014,588(24):4708-4719
Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levels and impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo.  相似文献   

12.
3,3'-Diindolylmethane (DIM) is a potential cancer preventive phytochemical derived from Brassica vegetables. The effects of DIM on cell-cycle regulation in both estrogen-dependent MCF-7 and estrogen receptor negative p53 mutant MDA-MB-468 human breast cancer cells were assessed in this study. DIM inhibited the breast cancer cell growth in vitro and in vivo, and caused cell-cycle arrest by down-regulating protein levels of cell-cycle related kinases CDK1, CDK2, CDK4, and CDK6, as well as Cyclin B1 and Cdc25A. Meanwhile, it was revealed that Ser(124) phosphorylation of Cdc25A is primarily responsible for the DIM-induced Cdc25A degradation. Furthermore, treatment of MCF-7 cells with DIM increased miR-21 expression and down-regulated Cdc25A, resulting in an inhibition of breast cancer cell proliferation. These observations collectively suggest that by differentially modulating cellular signaling pathways DIM is able to arrest the cell-cycle progression of human breast cancer cells.  相似文献   

13.
Epidemiologic studies repeatedly have shown chemopreventive effects of cruciferous vegetables. Indole-3-carbinol (I3C) and its metabolite diindolylmethane (DIM) were identified in these plants as active ingredients and theirs anti-tumor activities were confirmed in multiple in vitro and in vivo experiments. Here, we demonstrate that DIM is a selective and potent inhibitor of cancer stem cells (CSCs). In several cancer cell lines, DIM inhibited tumor sphere formation at the concentrations 30-300 times lower than concentrations required for growth inhibition of parental cells cultured as adherent culture. We also found that treatment with DIM overcomes chemoresistance of CSCs to cytotoxics, such as paclitaxel, doxorubicin, and SN-38. Pre-treatment of tumor spheres with DIM before implantation to mice significantly retarded the growth of primary tumors compared to tumors formed by untreated tumor spheres. The concentrations of DIM required to suppress CSCs formation are in the close range to those achievable in human plasma after oral dosing of the compound. Therefore, DIM can potentially be used in cancer patients, either alone, or in combinations with existing drugs.  相似文献   

14.
Epidemiological evidences suggest that the progression and promotion of prostate cancer (CaP) can be modulated by diet. Since all men die with prostate cancer rather than of the disease, it is of particular interest to prevent or delay the progression of the disease by chemopreventive strategies. We have been studying the anticancer properties of compounds present in cruciferous vegetables such as indole-3-carbinol (I3C). Diindolylmethane (DIM) is a dimer of I3C that is formed under acidic conditions and unlike I3C is more stable with higher anti-cancer effects. In the present report, we demonstrate that DIM is a potent anti-proliferative agent compared to I3C in the hormone independent DU 145 CaP cells. The anti-prostate cancer effect is mediated by the inhibition of the Akt signal transduction pathway as DIM, in sharp contrast to I3C, induces the downregulation of Akt, p-Akt, and PI3 kinase. DIM also induced a G1 arrest in DU 145 cells by flow cytometry and downstream concurrent inhibition of cell cycle parameters such as cyclin D1, cdk4, and cdk6. Our data suggest a need for further development of DIM, as a chemopreventive agent for CaP, which justifies epidemiological evidences and molecular targets that are determinants for CaP dissemination/progression. The ingestion of DIM may benefit CaP patients and reduce disease recurrence by eliminating micro-metastases that may be present in patients who undergo radical prostatectomy.  相似文献   

15.
Several lines of evidence suggest that the IκB kinase (IKK)/nuclear factor-κB (NFκB) axis is required for viability of leukemic cells and is a predictor of relapse in T-cell acute lymphoblastic leukemia (T-ALL). Moreover, many anticancer agents induce NFκB nuclear translocation and activation of its target genes, which counteract cellular resistance to chemotherapeutic drugs. Therefore, the design and the study of IKK-specific drugs is crucial to inhibit tumor cell proliferation and to prevent cancer drug-resistance. Here, we report the anti-proliferative effects induced by BMS-345541 (a highly selective IKK inhibitor) in three Notch1-mutated T-ALL cell lines and in T-ALL primary cells from pediatric patients. BMS-345541 induced apoptosis and an accumulation of cells in the G2/M phase of the cell cycle via inhibition of IKK/NFκB signaling. We also report that T-ALL cells treated with BMS-345541 displayed nuclear translocation of FOXO3a and restoration of its functions, including control of p21Cip1 expression levels. We demonstrated that FOXO3a subcellular re-distribution is independent of AKT and ERK 1/2 signaling, speculating that in T-ALL the loss of FOXO3a tumor suppressor function could be due to deregulation of IKK, as has been previously demonstrated in other cancer types.

It is well known that, differently from p53, FOXO3a mutations have not yet been found in human tumors, which makes therapeutics activating FOXO3a more appealing than others. For these features, BMS-345541 could be used alone or in combination with traditional therapies in the treatment of T-ALL.  相似文献   

16.
The cell cycle-regulatory protein, cyclin D1, is the sensor that connects the intracellular cell cycle machinery to external signals. Given this central role in the control of cell proliferation, it was surprising that mice lacking the cyclin D1 gene were viable and fertile. Fertility requires 17beta-estradiol (E2)-induced uterine luminal epithelial cell proliferation. In these cells E2 causes the translocation of cyclin D1/cyclin-dependent kinase 4 (CDK4) from the cytoplasm into the nucleus with the consequent phosphorylation of the retinoblastoma protein. In cyclin D1 null mice, E2 also induces retinoblastoma protein phosphorylation and DNA synthesis in a normal manner. CDK4 activity was slightly reduced in the D1 null mice compared with wild-type mice. This CDK4 activity was due to complexes of cyclin D2/CDK4. Cyclin D2 was translocated into the nucleus in response to E2 in the cyclin D1-/- mice to a much greater degree than in wild-type mice. This cyclin D2/CDK4 complex was also able to bind p27kip1 in cyclin D1-/- uterine luminal epithelial cells, allowing for the activation of CDK2. Our data show that in vivo cyclin D2 can completely compensate for the loss of cyclin D1 and reinforces the conclusions that cyclin Ds are the central regulatory point in the proliferative responses of epithelial cells to estrogens.  相似文献   

17.
In this study, overexpression of GADD45a induced by furazolidone in HepG2 cells could arouse S‐phase cell cycle arrest, suppress cell proliferation, and increase the activities of cyclin D1, cyclin D3, and cyclin‐dependent kinase 6 (CDK6). To the opposite, GADD45a knockdown cells by RNAi could reduce furazolidone‐induced S‐phase cell cycle arrest, increase the cell viability, decrease the activities of cyclin D1, cyclin D3, and CDK6; however, cyclin‐dependent kinase 4 (CDK4) showed no change. Moreover, data from our current studies show that cyclin D1, cyclin D3, and CDK6 are target genes functioning at the downstream of the GADD45a pathway induced by furazolidone. These results demonstrate that the GADD45a pathway is partially responsible for the furazolidone‐induced S‐phase cell cycle arrest. GADD45a influences furazolidone‐induced S‐phase cell cycle arrest in human hepatoma G2 cells via cyclin D1, cyclin D3, and CDK6, but not CDK4.  相似文献   

18.
The tumor suppressor p53 has been implicated in gamma irradiation-induced apoptosis. To investigate possible consequences of wild-type p53 loss in leukemia, we studied the effect of a single dose of gamma irradiation upon p53-deficient human T-ALL (acute lymphoblastic leukemia) CCRF - CEM cells. Exposure to 3 - 96 Gy caused p53-independent cell death in a dose and time-dependent fashion. By electron microscopic and other criteria, this cell death was classified as apoptosis. At low to intermediate levels of irradiation, apoptosis was preceded by accumulation of cells in the G2/M phase of the cell division cycle. Expression of Bcl-2 and Bax were not detectably altered after irradiation. Expression of the temperature sensitive mouse p53 V135 mutant induced apoptosis on its own but only slightly increased the sensitivity of CCRF - CEM cells to gamma irradiation. Thus, in these, and perhaps other leukemia cells, a p53- and Bcl-2/Bax-independent mechanism is operative that efficiently senses irradiation effects and translates this signal into arrest in the G2/M phase of the cell cycle and subsequent apoptosis.  相似文献   

19.
The transplantation of the human T-cell acute lymphoblastic leukemia (T-ALL) cell line HSB-2 into severe combined immune-deficient (SCID) mice was found to produce a disseminated pattern of leukemia similar to that seen in humans. The iv injection of 107 HSB-2 cells was associated with a universally fatal leukemia. Histopathological examination of animals revealed the spread of leukemia initially from bone marrow to involve all major organs including the meninges. An immunotoxin (HB2-Sap) was constructed by conjugating the anti-CD7 monoclonal antibody (MAb) HB2 to the ribosome inactivating protein (RIP) saporin. An in vitro protein synthesis inhibition assay revealed specific delivery of HB2-Sap immunotoxin (IT) to CD7+ HSB-2 target cells with an IC50 of 4.5 pM. In an in vivo study, the IT was shown to significantly prolong the survival of SCID mice injected with HSB-2 cells compared to untreated control animals. This therapeutic effect was seen both with a single injection of 10 μg of IT given 7 d after the injection of HSB-2 cells, and was even more effective when IT was administered as three daily injections of 10 μg on d 7, 8, and 9. These results demonstrate the useful application of human leukemia xenografts in SCID mice and the potential therapeutic effect of an anti-CD7 IT in human T-ALL.  相似文献   

20.
目的:通过建立一理想的动物模型来模拟T细胞急性淋巴细胞白血病的发病状态,为探索急性淋巴细胞白血病全新的治疗方法提供平台。方法:采用抗鼠-CD122抗体注射NOD/SCID小鼠进行预处理,通过尾静脉注射9例不同病例的白血病细胞,以及1株T-ALL细胞系。通过检测小鼠体内白血病细胞及脏器白血病细胞浸润情况,观察白血病细胞植入。将白血病细胞进行二次移植,观察移植稳定性。对白血病动物模型进行药物处理,观察小鼠生存期,模拟人体治疗反应。结果:有4例病例的细胞及T-ALL细胞株成功植入。流式细胞检测显示受体小鼠体内较多比例人CD45+细胞表达,免疫组化显示CD45+细胞浸润小鼠不同脏器,系列移植也获得成功。体内药物处理显示地塞米松能延长小鼠的生存期,与临床观察相一致。结论:成功建立经抗鼠CD122单抗预处理的人T细胞急性淋巴细胞白血病NOD/SCID小鼠模型,具有原发疾病的所有主要特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号