首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Reproduction in species of eusocial insects is monopolized by one or a few individuals, while the remaining colony tasks are performed by the worker caste. This reproductive division of labor is exemplified by honey bees (Apis mellifera L.), in which a single, polyandrous queen is the sole colony member that lays fertilized eggs. Previous work has revealed that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures in several aspects of reproductive potential compared to queens raised from older worker larvae. Here, we investigated the effects of queen reproductive potential (“quality”) on the growth and winter survival of newly established honey bee colonies. We did so by comparing the growth of colonies headed by “high-quality” queens (i.e., those raised from young worker larvae, which are more queen-like morphologically) to those headed by “low-quality” queens (i.e., those raised from older worker larvae, which are more worker-like morphologically). We confirmed that queens reared from young worker larvae were significantly larger in size than queens reared from old worker larvae. We also found a significant positive effect of queen grafting age on a colony’s production of worker comb, drone comb, and stored food (honey and pollen), although we did not find a statistically significant difference in the production of worker and drone brood, worker population, and colony weight. Our results provide evidence that in honey bees, queen developmental plasticity influences several important measures of colony fitness. Thus, the present study supports the idea that a honey bee colony can be viewed (at least in part) as the expanded phenotype of its queen, and thus selection acting predominantly at the colony level can be congruent with that at the individual level.  相似文献   

4.
Neuronal activity of the antennal lobes, mushroom bodies, and cervical connective in wild-type honey bees and snowlaranija mutants was recorded at different stages of the ontogeny (on the 1st, 3rd, 7th, and 25th days). The mutation snowlaranija affects the structural gene of tryptophane oxygenase, the first key exzyme in the kynurenine pathway of tryptophane metabolism, and leads to a deficit of kynurenines. Changes in neuronal activity in nutant bees were most pronounced in the cervical connective. A significant decrease in the pulse rate was revealed only in homozygous but not in heterozygous individuals. This finding is in accordance with previously reported inhibitory effect of the mutation at the behavioral level. Less pronounced effects were obtained when the neuronal activity was recorded in the antennal lobes or mushroom bodies. This may be related to a complex character of biochemical changes in different parts of mutants brain.  相似文献   

5.
We used solid-phase microextraction (SPME, 65 microm PDMS-DVB fiber) to sample the volatile compounds emitted by live honey bee queens in several reproductive states (unmated queens, recently mated queens, and established mated queens), and compared them to the volatiles emitted by workers. We detected nine compounds that were present in at least 75% of the individuals in at least one type of bee, and which were not present in the sampling environment alone. Four of these compounds were present in queens but not in workers. One of these four compounds, identified as E-beta-ocimene, was expressed fully only in established mated queens and may be a signal of diploid egg-laying activity. The three remaining queen-specific compounds (including one identified as 2-phenylethanol) were associated with unmated queens and may mediate interactions between unmated queens and workers during queen elimination. The five common compounds that we detected in both queens and workers were hydrocarbons and may function as nestmate recognition cues. We consider these discoveries as a first step in determining the potentially important functions of volatile signals and cues within honey bee nests.  相似文献   

6.
Physiological mechanisms of antennal sucrose perception in the honey bee were analysed using behavioural and electrophysiological methods. Following sucrose stimulation of the tip of a freely moving antenna, the latency of proboscis extension was 320–340 ms, 80–100 ms after the first activity in muscle M17 controlling this response. When bees were allowed to actively touch a sucrose droplet with one antenna, contacts with the solution were frequent with durations of 10–20 ms and average intervals between contacts of approximately 40 ms. High sucrose concentrations led to short and frequent contacts. The proboscis response and M17 activity were largely independent of stimulus duration and temporal pattern. Taste hairs of the antennal tip displayed spike responses to sucrose concentrations down to at least 0.1%. The first 25 ms of the response were suitable for discrimination of sucrose concentrations. This time interval corresponds to the duration of naturally occurring gustatory stimuli. Sucrose responses between different hairs on the same antenna showed a high degree of variability, ranging from less than five to over 40 spikes per 0.5 s for a stimulus of 0.1% sucrose. This variability of receptor responses extends the dynamic range of sucrose perception over a large range of concentrations.  相似文献   

7.
Antennal movements of the honey bee can be conditioned operantly under laboratory conditions. Using this behavioural paradigm we have developed a preparation in which the activity of a single antennal muscle has been operantly conditioned. This muscle, the fast flagellum flexor muscle, is innervated by an identified motoneuron whose action potentials correlate 1:1 with the muscle potentials. The activity of the fast flagellum flexor muscle was recorded extracellularly from the scapus of the antenna. The animal was rewarded with a drop of sucrose solution whenever the muscle activity exceeded a defined reward threshold. The reward threshold was one standard deviation above the mean spontaneous frequency prior to conditioning. After ten conditioning trials, the frequency of the muscle potentials had increased significantly compared to the spontaneous frequency. The conditioned changes of frequency were observed for 30 min after conditioning. No significant changes of the frequency were found in the yoke control group. The firing pattern of the muscle potentials did not change significantly after conditioning or feeding. Fixing the antennal joints reduces or abolishes associative operant conditioning. The conditioned changes of the frequency of muscle potentials in the freely moving antenna are directly comparable to the behavioural changes during operant conditioning. Accepted: 29 March 2000  相似文献   

8.
In queen honey bees the free amino acid content in the haemolymph clearly depends on the physiological function and social environment of the individual. While in drones and workers the content of free amino acids increases after emergence until it reaches a peak in 5-day-old animals and decreases afterwards, the amino acid content in queens reaches its highest level (>60 nmol/ microl haemolymph) with the onset of egg laying (10 d of age). This level is about 2.5 times more than the highest level found in workers. Queens maintain this high level also when they are older (>30 d) and continue to lay eggs in average colonies. As in drones and workers, in queens the predominant amino acid is proline, which accounts for more than 50% of the total content of free amino acids in egg-laying individuals. When 10-day-old queens are prevented from mating and do not lay eggs, their amino acid content is significantly lower compared to laying queens of the same age. Also the social environment influences the contents of free amino acids in queens. When virgin queens were kept for 6 days with 20 worker bees and sufficient honey and pollen in an incubator, they had significantly lower concentrations of amino acids than virgin queens living for the same period with about 8000 workers in a colony. Most probably, the high amino acid concentration in the haemolymph is the basis for the high protein synthesis activity of laying queens.  相似文献   

9.
Honey bee colonies consist of tens of thousands of workers and a single reproductive queen that produces a pheromone blend which maintains colony organization. Previous studies indicated that the insemination quantity and volume alter queen mandibular pheromone profiles. In our 11-month long field study we show that workers are more attracted to high-volume versus low-volume inseminated queens, however, there were no significant differences between treatments in the number of queen cells built by workers in preparation for supersedure. Workers exposed to low-volume inseminated queens initiated production of queen-like esters in their Dufour's glands, but there were no significant difference in the amount of methyl farnesoate and juvenile hormone in worker hemolymph. Lastly, queen overwintering survival was unexpectedly lower in high-volume inseminated queens. Our results suggest that the queen insemination volume could ultimately affect colony health and productivity.  相似文献   

10.
Genetic and environmental influences on the worker honey bee retinue response to queen mandibular gland pheromone (QMP) were investigated. Worker progeny were reared from queens originating from four sources: Australia, New Zealand, and two locations in British Columbia, Canada (Simon Fraser University and Vancouver Island). Progeny from New Zealand queens responded significantly higher (P < 0.05) than progeny from Australia in a QMP retinue bioassay. Retinue response was not related to queen production of pheromone or colony environment, and the strain-dependent differences in retinue bioassay responses were maintained over a wide range of dosages. Selected high- and low-responding colonies were bioassayed over the course of 1 year. High-responding colonies contacted QMP lures more frequently than low-responding colonies (P < 0.05) throughout the year except in late summer. We conclude that there is a strong genetic component to QMP response by worker honey bees, as well as a seasonal effect on response.  相似文献   

11.
12.
Five neuropeptides with known allatotropic or allatostatic activity in other insect species were examined for their effects on honey bee corpora allata. Using an in vitro radiochemical assay, we assessed the ability of these peptides to affect the biosynthesis of juvenile hormone III and its immediate precursor methyl farnesoate, as well as their effects on the conversion of methyl farnesoate into juvenile hormone. None of the allatostatins tested affected JH biosynthesis during the last larval instar of honey bee workers. Manduca sexta allatotropin, however, stimulated JH biosynthesis in a stage-specific and dose-dependent manner. Analysis of intraglandular contents of juvenile hormone and its precursor revealed that the allatotropin significantly increased JH precursor but did not overcome the stage-specific block in the terminal step of JH biosynthesis that is typical for early fifth-instar worker larvae. Studies also indicated that the allatotropic effect was reversible at the level of methyl farnesoate production.  相似文献   

13.
Nosema ceranae is a recently described pathogen of Apis mellifera and Apis cerana. Relatively little is known about the distribution or prevalence of N. ceranae in the United States. To determine the prevalence and potential impact of this new pathogen on honey bee colonies in Virginia, over 300 hives were sampled across the state. The samples were analyzed microscopically for Nosema spores and for the presence of the pathogen using real-time PCR. Our studies indicate that N. ceranae is the dominant species in Virginia with an estimated 69.3% of hives infected. Nosema apis infections were only observed at very low levels (2.7%), and occurred only as co-infections with N. ceranae. Traditional diagnoses based on spore counts alone do not provide an accurate indication of colony infections. We found that 51.1% of colonies that did not have spores present in the sample were infected with N. ceranae when analyzed by real-time PCR. In hives that tested positive for N. ceranae, average CT values were used to diagnose a hive as having a low, moderate, or a heavy infection intensity. Most infected colonies had low-level infections (73%), but 11% of colonies had high levels of infection and 16% had moderate level infections. The prevalence and mean levels of infection were similar in different regions of the state.  相似文献   

14.
1.  The effects of the biogenic amines serotonin and octopamine on motion-sensitive neurons in the lobula of the honey bee were analysed electrophysiologically. Single cell activity was recorded intracellularly during application of amines. Field potentials in the lobula were recorded to measure the effects on populations of motion-sensitive neurons.
2.  Serotonin and octopamine modulate the response properties of motion-sensitive neurons in the lobula in a functionally antagonistic way.
3.  The application of serotonin, in most cases, reduces background activity as well as responses to moving stripe patterns by motion-sensitive lobula neurons. The direction specificity can also decrease after serotonin application. In accordance with the single cell recordings, the amplitudes of lobula field potentials evoked by moving stripe patterns are also reduced by application of serotonin.
4.  Octopamine leads to an increase in the amplitude and the initial slope of field potentials evoked by moving stripe patterns. However, there were no uniform effects at the single cell level after octopamine application.
5.  The modulatory effects of serotonin and octopamine on motion-sensitive neurons correlate well with some behavioral modifications elicited by these substances (Erber et al. 1991; Erber and Kloppenburg, companion paper).
  相似文献   

15.
Honey bees, Apis mellifera, which perform hygienic behavior, quickly detect, uncap and remove diseased brood from the nest. This behavior, performed by bees 15-20 days old and prior to foraging, is likely mediated by olfactory cues. Because the neuromodulator octopamine (OA) plays a pivotal role in olfactory-based behaviors of honey bees, we examined whether bees bred for hygienic and nonhygienic behavior differed with regard to their OA expression and physiology. We compared the staining intensity of octopamine-immunoreactive (OA-ir) neurons in the deutocerebral region of the brain, medial to the antennal lobes, between hygienic and nonhygienic bees (based on genotype and phenotype). We also tested how the olfactory responses of the two lines, based on electroantennograms (EAGs), were affected by oral administration of OA and of epinastine, a highly specific OA antagonist. Our results revealed that bees expressing hygienic behavior (irrespective of genotype) possessed OA-ir neurons that exhibited more intense labeling than same-aged bees not performing the behavior. In bees bred for nonhygienic behavior, OA significantly increased the EAG response to low concentrations of diseased brood odor. Conversely, in bees bred for hygienic behavior, epinastine significantly reduced the magnitude of the EAG response, a reduction not observed in nonhygienic bees. Our results provide two lines of evidence that OA has the potential to facilitate the detection and response of honey bees to diseased brood. We discuss the contributions of OA for behavioral shaping and its ability to bias the nervous system to express one form of behavior over another.  相似文献   

16.
Honey bees have brain structures with specialized and developed systems of communication that account for memory, learning capacity and behavioral organization with a set of genes homologous to vertebrate genes. Many microtubule- and actin-based molecular motors are involved in axonal/dendritic transport. Myosin-Va is present in the honey bee Apis mellifera nervous system of the larvae and adult castes and subcastes. DYNLL1/LC8 and myosin-IIb, -VI and -IXb have also been detected in the adult brain. SNARE proteins, such as CaMKII, clathrin, syntaxin, SNAP25, munc18, synaptophysin and synaptotagmin, are also expressed in the honey bee brain. Honey bee myosin-Va displayed ATP-dependent solubility and was associated with DYNLL1/LC8 and SNARE proteins in the membrane vesicle-enriched fraction. Myosin-Va expression was also decreased after the intracerebral injection of melittin and NMDA. The immunolocalization of myosin-Va and -IV, DYNLL1/LC8, and synaptophysin in mushroom bodies, and optical and antennal lobes was compared with the brain morphology based on Neo-Timm histochemistry and revealed a distinct and punctate distribution. This result suggested that the pattern of localization is associated with neuron function. Therefore, our data indicated that the roles of myosins, DYNLL1/LC8, and SNARE proteins in the nervous and visual systems of honey bees should be further studied under different developmental, caste and behavioral conditions.  相似文献   

17.
Summary Kin recognition and nepotism between honeybee workers (Apis mellifera L.) was analysed in a trophallactic bio-assay. Donor workers were fed dyed sugar syrup and introduced into a recipient group consisting of 12 to 15 workers of the same colony. After allowing for 1 hour of trophallaxis, the distribution of the dyed food was analysed with spectrophotometry. The subfamily composition in the recipient group was varied such that the donor bees had to discriminate between workers of 2 to 7 different patrilines. Donor bees preferentially fed super sisters if few patrilines were present in the recipient group. However, preferential feeding was not observed if the recipient group consisted of workers of more than three subfamilies. Since the natural degree of polyandry causes intracolonial genetic variance to exceed the genetic variability in the experiments, nepotistic behaviour among workers may not reveal intranidal subfamily recognition in honeybees.  相似文献   

18.
The cAMP-dependent protein kinase A is involved in the induction of long-term memory and habituation in the bee. Gustatory responsiveness correlates strongly with associative and non-associative learning in bees. We tested whether protein kinase A activity in the antennal lobes correlates with gustatory responsiveness. Thirty minutes after feeding, bees with high gustatory responsiveness had a significantly higher protein kinase A activity than bees with low responsiveness. Ninety minutues after feeding, when gustatory responsiveness had increased in initially unresponsive bees, no changes in protein kinase A activity were found. We also tested time-dependent effects of protein kinase A activator and protein kinase A inhibitor on gustatory responsiveness. Injection of the protein kinase A activator adenosine 3'5'-cyclic monophosphate 8-bromo-sodium salt or of the protein kinase A inhibitor KT 5720 did not affect gustatory responsiveness within the first 4 h after treatment. Feeding of adenosine 3'5'-cyclic monophosphate 8-bromo-sodium salt over 4 days increased gustatory responsiveness in newly emerged bees and adult foragers. These results enable us to distinguish between two different forms of gustatory responsiveness: basal and transient gustatory responsiveness. Basal gustatory responsiveness correlates with protein kinase A activity and can only be modulated in the range of several days. Transient gustatory responsiveness appears to be independent of protein kinase A activity and can be modulated in the range of minutes to hours.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号