共查询到20条相似文献,搜索用时 0 毫秒
1.
Ma X Liu Z Yang X Gao Q Zhu S Qin C Liu K Zhang B Han D Wang F Tian J 《Molecular imaging》2011,10(4):278-283
The purpose of this study was to noninvasively monitor the therapeutic efficacy of cyclophosphamide (CTX) in a mouse model by dual-modality molecular imaging: positron emission tomography (PET) and bioluminescence imaging (BLI). Firefly luciferase (fLuc) transfected HCC-LM3-fLuc human hepatocellular carcinoma cells were injected subcutaneously into BALB/c nude mice to establish the experimental tumor model. Two groups of HCC-LM3-fLuc tumor-bearing mice (n = 7 per group) were treated with saline or CTX (100 mg/kg on days 0, 2, 5, and 7). BLI and (18)F-fluorodeoxyglucose ((18)F-FDG) PET scans were done to evaluate the treatment efficacy. CTX induced a 25.25 ± 13.13% and 35.91 ± 25.85% tumor growth inhibition rate on days 9 and 12 posttreatment, respectively, as determined by BLI. A good linear correlation was found between the tumor sizes measured by caliper and the BLI signals determined by optical imaging (R(2) = .9216). (18)F-FDG imaging revealed a significant uptake reduction in the tumors of the CTX-treated group compared to that in the saline control group (5.30 ± 1.97 vs 3.00 ± 2.11% ID/g) on day 16 after CTX treatment. Dual-modality molecular imaging using BLI and small-animal PET can play important roles in the process of chemotherapy and will provide noninvasive and reliable monitoring of the therapeutic response. 相似文献
2.
Darwin J. Prockop Malcolm Brenner Willem E. Fibbe Edwin Horwitz Katarina Le Blanc Donald G. Phinney Paul J. Simmons Luc Sensebe Armand Keating 《Cytotherapy》2010,12(5):576-578
We address the issue of the potential for malignant transformation of cultured mesenchymal stromal cells (MSC) commonly used in clinical cell-therapy protocols and describe the culture conditions under which tumorigenesis is likely to be an extremely uncommon event. 相似文献
3.
Jesús Vaquero Mercedes Zurita Miguel A. Rico Concepcion Aguayo Cecilia Fernandez Gregorio Rodriguez-Boto Esperanza Marin Noemi Tapiador Marta Sevilla Joaquin Carballido David Vazquez Damian Garcia-Olmo Hector Guadalajara Miguel Leon Ignacio Valverde 《Cytotherapy》2018,20(6):796-805
Background aims
Recently, clinical studies show that cell therapy with mesenchymal stromal cells (MSCs) improves the sequelae chronically established in paraplegic patients, being necessary to know which of them can obtain better benefit.Methods
We present here a phase 2 clinical trial that includes six paraplegic patients with post-traumatic syringomyelia who received 300 million MSCs inside the syrinx and who were followed up for 6 months. Clinical scales, urodynamic, neurophysiological, magnetic resonance (MR) and studies of ano-rectal manometry were performed to assess possible improvements.Results
In all the cases, MR at the end of the study showed a clear reduction of the syrinx, and, at this time, signs of improvement in the urodynamic studies were found. Moreover, four patients improved in ano-rectal manometry. Four patients improved in neurophysiological studies, with signs of improvement in evoked potentials in three patients. In the American Spinal Injury Association (ASIA) assessment, only two patients improved in sensitivity, but clinical improvement in neurogenic bowel dysfunction was observed in four patients and three patients described improvement in bladder dysfunction. Spasms reduced in two of the five patients who had them previous to cell therapy, and spasticity was improved in the other two patients. Three patients had neuropathic pain before treatment, and it was reduced or disappeared completely during the study. Only two adverse events ocurred, without relation to the cell therapy.Conclusions
Cell therapy can be considered as a new alternative to the treatment of post-traumatic syringomyelia, achieving reduction of syrinx and clinical improvements in individual patients. 相似文献4.
Giulia Grisendi Cecilia Annerén Luigi Cafarelli Rita Sternieri Elena Veronesi Gian Luca Cervo Stefano Luminari Michela Maur Antonio Frassoldati Giovanni Palazzi Satoru Otsuru Franco Bambi Paolo Paolucci Conte Pierfranco Edwin Horwitz Massimo Dominici 《Cytotherapy》2010,12(4):466-477
Background aimsBone marrow (BM) mesenchymal stromal/stem cells (MSC) are therapeutic tools in regenerative medicine and oncology. MSC isolation is often performed starting from a separation step based on research-grade 1.077 g/mL density gradient media (DGM). However, MSC clinical application should require the introduction of good manufacturing practice (GMP) reagents. We took advantage of two novel GMP DGM with densities of 1.077 and 1.073 g/mL (Ficoll-Paque? PREMIUM and Ficoll-Paque PREMIUM 1.073, respectively) to test whether these reagents could isolate MSC efficiently while simultaneously comparing their performance.MethodsBM samples were processed using either 1.077 or 1.073 g/mL GMP DGM. BM mononucleated cell (MNC) fractions were analyzed for viability, immunophenotype, clonogenic potential, ex vivo expansion and differentiation potential.ResultsNo differences were noticed in cell recovery and viability between the groups. Fluorescence-activated cell-sorting (FACS) analyzes on freshly isolated cells indicated that the 1.073 g/mL GMP DGM more efficiently depleted the CD45+ fraction in comparison with 1.077 GMP DGM. Moreover, in the 1.073 group, fibroblastic colony-forming units (CFU-F) were 1.5 times higher and the final MSC yield 1.8 times increased after four passages. Both reagents isolated MSC with the expected phenotype; however, 1.073-isolated MSC showed a higher expression of CD90, CD146 and GD2. Additionally, MSC from both groups were capable of fully differentiating into bone, adipose cells and cartilage.ConclusionsBoth GMP DGM enriched MSC from BM samples, suggesting that these reagents would be suitable for clinical-grade expansions. In addition, the density of 1.073 g/mL provides a significant advantage over 1.077 g/mL GMP DGM, impacting the quantity of MSC obtained and reducing the ex vivo expansion time for optimized cell-based clinical applications. 相似文献
5.
6.
Mesenchymal stromal cells (MSCs) are being employed in clinical trials to facilitate engraftment and to treat steroid-resistant acute graft-versus-host disease after hematopoietic stem cell transplantation, as well as to repair tissue damage in inflammatory/degenerative disorders, in particular, in inflammatory bowel diseases (IBDs). When entering the clinical arena, a few potential risks of MSC therapy have to be taken into account: (i) immunogenicity of the cells, (ii) biosafety of medium components, (iii) risk of ectopic tissue formation, and (iv) potential in vitro transformation of the cells during expansion. This paper analyzes the main risks connected with the use of MSCs in cellular therapy approaches, and reports on some of the most intriguing findings on the use of MSCs in the context of regenerative medicine. Experimental studies in animal models and phase I/II clinical trials on the use of MSCs for the treatment of IBDs and other inflammatory/degenerative conditions are reviewed. 相似文献
7.
The cell surface proteome of human mesenchymal stromal cells 总被引:1,自引:0,他引:1
Background
Multipotent human mesenchymal stromal cells (hMSCs) are considered as promising biological tools for regenerative medicine. Their antibody-based isolation relies on the identification of reliable cell surface markers.Methodology/Principal Findings
To obtain a comprehensive view of the cell surface proteome of bone marrow-derived hMSCs, we have developed an analytical pipeline relying on cell surface biotinylation of intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin to enrich the plasma membrane proteins and mass spectrometry for identification with extremely high confidence. Among the 888 proteins identified, we found ≈200 bona fide plasma membrane proteins including 33 cell adhesion molecules and 26 signaling receptors. In total 41 CD markers including 5 novel ones (CD97, CD112, CD239, CD276, and CD316) were identified. The CD markers are distributed homogenously within plastic-adherent hMSC populations and their expression is modulated during the process of adipogenesis or osteogenesis. Moreover, our in silico analysis revealed a significant difference between the cell surface proteome of hMSCs and that of human embryonic stem cells reported previously.Conclusions/Significance
Collectively, our analytical methods not only provide a basis for further studies of mechanisms maintaining the multipotency of hMSCs within their niches and triggering their differentiation after signaling, but also a toolbox for a refined antibody-based identification of hMSC populations from different tissues and their isolation for therapeutic intervention. 相似文献8.
Mesenchymal stromal cells (MSC) are a population of phenotypically heterogeneous cells that can be isolated from many readily accessible tissues, including bone marrow, umbilical cord, placenta and adipose tissue, where they form part of the supportive, stromal micro-environment. Extensive ex vivo and pre-clinical data suggest that subpopulations within MSC contribute to immunomodulation of the host, without provoking immunologic responses from alloreactive T cells or other effector cells, as well as contributing to tissue repair. These unique properties make MSC an ideal investigational agent for treating graft-versus-host disease (GvHD). Therapeutic trials with varied MSC dosing schedules and clinical end-points have shown mixed results. We have reviewed the biology of MSC gleaned from pre-clinical models, and summarized the results of clinical trials utilizing MSC for the treatment of acute and chronic GvHD. 相似文献
9.
Nicola J. Robertson Christopher Meehan Kathryn A. Martinello Adnan Avdic-Belltheus Tiziana Boggini Tatenda Mutshiya Ingran Lingam Qin Yang Magdalena Sokolska Xenia Charalambous Alan Bainbridge Mariya Hristova Boris W. Kramer Xavier Golay Ben Weil Mark W. Lowdell 《Cytotherapy》2021,23(6):521-535
Background: With therapeutic hypothermia (HT) for neonatal encephalopathy, disability rates are reduced, but not all babies benefit. Pre-clinical rodent studies suggest mesenchymal stromal cells (MSCs) augment HT protection. Aims:The authors studied the efficacy of intravenous (IV) or intranasal (IN) human umbilical cord-derived MSCs (huMSCs) as adjunct therapy to HT in a piglet model. Methods:A total of 17 newborn piglets underwent transient cerebral hypoxia-ischemia (HI) and were then randomized to (i) HT at 33.5°C 1–13 h after HI (n = 7), (ii) HT+IV huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5) or (iii) HT+IN huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5). Phosphorus-31 and hydrogen-1 magnetic resonance spectroscopy (MRS) was performed at 30 h and 72 h and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and oligodendrocytes quantified. In two further piglets, 30 × 106 IN PKH-labeled huMSCs were administered. Results:HI severity was similar between groups. Amplitude-integrated electroencephalogram (aEEG) recovery was more rapid for HT+IN huMSCs compared with HT from 25 h to 42 h and 49 h to 54 h (P ≤ 0.05). MRS phosphocreatine/inorganic phosphate was higher on day 2 in HT+IN huMSCs than HT (P = 0.035). Comparing HT+IN huMSCs with HT and HT+IV huMSCs, there were increased OLIG2 counts in hippocampus (P = 0.011 and 0.018, respectively), internal capsule (P = 0.013 and 0.037, respectively) and periventricular white matter (P = 0.15 for IN versus IV huMSCs). Reduced TUNEL-positive cells were seen in internal capsule with HT+IN huMSCs versus HT (P = 0.05). PKH-labeled huMSCs were detected in the brain 12 h after IN administration. Conclusions:After global HI, compared with HT alone, the authors saw beneficial effects of HT+IN huMSCs administered at 24 h and 48 h (30 × 106 cells/kg total dose) based on more rapid aEEG recovery, improved 31P MRS brain energy metabolism and increased oligodendrocyte survival at 72 h. 相似文献
10.
Lin SY Yang J Everett AD Clevenger CV Koneru M Mishra PJ Kamen B Banerjee D Glod J 《Experimental cell research》2008,314(17):3107-3117
Bone marrow-derived mesenchymal stromal cells (MSCs) localize to solid tumors. Defining the signaling mechanisms that regulate this process is important in understanding the role of MSCs in tumor growth. Using a combination of chromatography and electrospray tandem mass spectrometry we have identified novel soluble signaling molecules that induce MSC chemotaxis present in conditioned medium of the breast carcinoma cell line MDA-MB231. Previous work has employed survey strategies using ELISA assay to identify known chemokines that promote MSC chemotaxis. While these studies provide valuable insights into the intercellular signals that impact MSC behavior, many less well-described, but potentially important soluble signaling molecules could be overlooked using these methods. Through the less directed method of column chromatography we have identified novel candidate MSC chemotactic peptides. Two proteins, cyclophilin B and hepatoma-derived growth factor were then further characterized and shown to promote MSC chemotaxis. 相似文献
11.
Mehdi Najar Johanne Martel-Pelletier Jean Pierre Pelletier Hassan Fahmi 《World journal of stem cells》2020,12(12):1474-1491
Mesenchymal stromal cells (MSCs) have attracted great interest in the field of regenerative medicine. They can home to damaged tissue, where they can exert pro-regenerative and anti-inflammatory properties. These therapeutic effects involve the secretion of growth factors, cytokines, and chemokines. Moreover, the functions of MSCs could be mediated by extracellular vesicles (EVs) that shuttle various signaling messengers. Although preclinical studies and clinical trials have demonstrated promising therapeutic results, the efficiency and the safety of MSCs need to be improved. After transplantation, MSCs face harsh environmental conditions, which likely dampen their therapeutic efficacy. A possible strategy aiming to improve the survival and therapeutic functions of MSCs needs to be developed. The preconditioning of MSCs ex vivo would strength their capacities by preparing them to survive and to better function in this hostile environment. In this review, we will discuss several preconditioning approaches that may improve the therapeutic capacity of MSCs. As stated above, EVs can recapitulate the beneficial effects of MSCs and may help avoid many risks associated with cell transplantation. As a result, this novel type of cell-free therapy may be safer and more efficient than the whole cell product. We will, therefore, also discuss current knowledge regarding the therapeutic properties of MSC-derived EVs. 相似文献
12.
Luis Ignacio Sánchez-Abarca Isabel Álvarez-Laderas María Díez Campelo Teresa Caballero-Velázquez Carmen Herrero Sandra Muntión Cristina Calderón Estefanía García-Guerrero Fermín Sánchez-Guijo Consuelo del Cañizo Jesús San Miguel José Antonio Pérez-Simón 《Cytotherapy》2013,15(6):673-678
Background aimsMesenchymal stromal cells (MSCs) are multipotent stem cells with immunosuppressive properties. Nevertheless, it has been previously reported that MSCs might also trigger the immune response. We studied whether MSCs may act as carriers, capturing antigens that can be endocytosed by antigen-presenting cells later on.MethodsWe measured the cellular uptake of mannose receptor-mediated fluid phase macropinocytosis, assessed as cellular uptake of fluorescein isothiocyanate-dextran, and PKH-67-labeled cell lysates as a surrogate marker for antigen capture among dendritic cells (DCs, positive control), T lymphocytes (negative control) and MSCs.ResultsAll experiments confirmed that MCSs displayed pinocytic and endocytic capacities, which were lower than those observed for DCs but significantly higher than those observed for T cells. We also demonstrated that MSCs release previously endocytosed antigens, which subsequently can be captured by DCs.ConclusionsMSCs have the ability to capture and release antigens. 相似文献
13.
《Cytotherapy》2020,22(12):762-771
Background aimsMesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs).MethodsMSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs.ResultsMSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions.ConclusionsLPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs. 相似文献
14.
Illumination of cellular changes caused by mechanical forces present within the laryngeal microenvironment may well guide strategies for tissue engineering the vocal fold lamina propria. The purpose of this study was to compare the response of human vocal fold fibroblasts (hVFF) and bone marrow mesenchymal stem cells (BM-MSC) to vibratory stimulus. In order to study these effects, a bioreactor capable of vibrating two cell seeded substrates was developed. The cell seeded substrates contact each other as a result of the sinusoidal frequency, producing a motion similar to the movement of true vocal folds. Utilizing this bioreactor, hVFF and BM-MSC were subjected to 200 Hz vibration and 20% strain for 8 hours. Immunohistochemistry (Ki-67 and TUNEL) was performed to examine cell proliferation and apoptosis respectively, while semi-quantitative RT-PCR was used to assess extracellular matrix related gene expression. HVFF significantly proliferated (p = 0.011) when subjected to 200 Hz vibration and 20% strain, while BM-MSC did not (p = 1.0). A statistically significant increase in apoptosis of BM-MSC (p = 0.0402) was observed under the experimental conditions; however high cell viability (96%) was maintained. HVFF did not have significantly altered apoptosis (p = 0.7849) when subjected to vibration and strain. Semi-quantitative RT-PCR results show no significant differences in expression levels of collagen I (BM-MSC p = 0.1951, hVFF p = v0.3629), fibronectin (BM-MSC p = 0.1951, hVFF p = 0.2513), and TGF-β1 (BM-MSC p = 0.2534, hVFF p = 0.6029) between vibratory and static conditions in either cell type. Finally, smooth muscle actin mRNA was not present in either vibrated or static samples, indicating that no myofibroblast differentiation occurred for either cell type. Together, these results demonstrate that BM-MSC may be a suitable alternative to hVFF for vocal fold tissue engineering. Further investigation into a larger number of gene markers, protein levels, increased number of donors and vibratory conditions are warranted. 相似文献
15.
Flavia Franco da Cunha Leonardo Martins Priscila Keiko Matsumoto Martin Roberta Sessa Stilhano Edgar Julian Paredes Gamero Sang Won Han 《Cytotherapy》2013,15(7):820-829
Background aimsGranulocyte macrophage-colony stimulating factor (GM-CSF) promotes vessel formation through several molecular signaling pathways. Mesenchymal stromal cells (MSCs) have an important role in neovasculogenesis during ischemia because they release pro-angiogenic paracrine factors, pro-survival and immunomodulatory substances and can differentiate into endothelial cells. The objective of this study was to evaluate whether there is synergy between GM-CSF and MSCs in recovering ischemic limbs.MethodsMSCs from mouse bone marrow were transduced with a lentiviral vector expressing GM-CSF and injected into animals with surgically induced limb ischemia, with unmodified MCSs used as control. The evolution of limb necrosis was evaluated for 1 month. Muscle strength was assessed on the 30th day, and the animals were euthanized to determine the muscle mass and to perform histological analyses to determine the degree of cellular infiltration, capillary and microvessel densities, fibrosis, necrosis and tissue regeneration.ResultsBoth treatments were able to ameliorate ischemia, decrease the areas of fibrosis, necrosis, adipocytes and leukocyte infiltrates and increase the number of capillaries. The addition of GM-CSF promoted the formation of larger vessels, but it also resulted in more fibrosis and less muscle mass without affecting muscle force.ConclusionsBoth treatments resulted in a remarkable amelioration of ischemia. More fibrosis and less muscle mass produced by the overexpression of GM-CSF did not affect muscle functionality significantly. Importantly, MSCs overexpressing GM-CSF produced larger vessels, which is an important long-term advantage because larger vessels are more efficient in the reperfusion of ischemic tissues physiologically. 相似文献
16.
Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens 总被引:21,自引:0,他引:21
Angoulvant D Clerc A Benchalal S Galambrun C Farre A Bertrand Y Eljaafari A 《Biorheology》2004,41(3-4):469-476
Mesenchymal stem cells (MSC) fail to induce allogeneic responses in mixed lymphocyte reaction assays. Because MSC express HLA class I molecules, here we investigated whether they could be recognized as allogeneic targets by cytolytic T lymphocytes (CTL). With this aim, CTL precursor (CTLp) frequencies were measured following stimulation of T cells with either allogeneic mononuclear cells (MNC) or MSC originated from the same human bone marrow donor. Lysis of MSC was measured at day 10 of culture in standard chromium release assays. In addition, allogeneic PHA blast T cells or B-EBV lymphoblastoid cell lines (LCLs) generated from the same donor were used as positive controls of lysis. Our results showed that when allogeneic MNC were used to stimulate T cells, a high CTLp frequency was detected towards MSC targets. However, when MSC were used as stimulators, CTLp frequencies were markedly altered whatever the targets used, i.e.: MSC, PHA blast T cells or EBV-B LCLs. Moreover, when graded concentrations of MSC were added together with MNC upon stimulation of alloreactive T cells, we observed a dose-dependent decrease in CTLp frequencies towards MSC targets. This inhibition of MSC lysis was partially overcome by adding exogenous rh-IL-2 from the beginning of cultures. In addition, this suppressive effect was totally reproduced when, instead of MSC, supernatant harvested from MSC cultures was added to allogeneic MNC, upon stimulation of alloreactive T cells. In conclusion, our results demonstrate that MSC which can be recognized as targets by pre-activated alloreactive CTLs, may be able to suppress differentiation of CTL precursors into CTL effectors through secretion of suppressive factors. 相似文献
17.
18.
Suheyla Hasgur Laura Desbourdes Theresa Relation Kathleen M. Overholt Joseph R. Stanek Adam J. Guess Minjun Yu Pratik Patel Linda Roback Massimo Dominici Satoru Otsuru Edwin M. Horwitz 《Cytotherapy》2021,23(5):411-422
Mesenchymal stromal cells (MSCs) possess remarkable tumor tropism, making them ideal vehicles to deliver tumor-targeted therapeutic agents; however, their value in clinical medicine has yet to be realized. A barrier to clinical utilization is that only a small fraction of infused MSCs ultimately localize to the tumor. In an effort to overcome this obstacle, we sought to enhance MSC trafficking by focusing on the factors that govern MSC arrival within the tumor microenvironment. Our findings show that MSC chemoattraction is only present in select tumors, including osteosarcoma, and that the chemotactic potency among similar tumors varies substantially. Using an osteosarcoma xenograft model, we show that human MSCs traffic to the tumor within several hours of infusion. After arrival, MSCs are observed to localize in clusters near blood vessels and MSC-associated bioluminescence signal intensity is increased, suggesting that the seeded cells expand after engraftment. However, our studies reveal that a significant portion of MSCs are eliminated en route by splenic macrophage phagocytosis, effectively limiting the number of cells available for tumor engraftment. To increase MSC survival, we transiently depleted macrophages with liposomal clodronate, which resulted in increased tumor localization without substantial reduction in tumor-associated macrophages. Our data suggest that transient macrophage depletion will significantly increase the number of MSCs in the spleen and thus improve MSC localization within a tumor, theoretically increasing the effective dose of an anti-cancer agent. This strategy may subsequently improve the clinical efficacy of MSCs as vehicles for the tumor-directed delivery of therapeutic agents. 相似文献
19.
《Cytotherapy》2014,16(8):1048-1058
BackgroundThe use of bone marrow–derived mesenchymal stromal cells (MSCs) as a cellular therapy for various diseases, such as graft-versus-host disease, diabetes, ischemic cardiomyopathy and Crohn's disease, has produced promising results in early-phase clinical trials. However, for widespread application and use in later phase studies, manufacture of these cells must be cost-effective, safe and reproducible. Current methods of manufacturing in flasks or cell factories are labor-intensive, involve a large number of open procedures and require prolonged culture times.MethodsWe evaluated the Quantum Cell Expansion System for the expansion of large numbers of MSCs from unprocessed bone marrow in a functionally closed system and compared the results with a flask-based method currently in clinical trials.ResultsAfter only two passages, we were able to expand a mean of 6.6 × 108 MSCs from 25 mL of bone marrow reproducibly. The mean expansion time was 21 days, and cells obtained were able to differentiate into all three lineages: chondrocytes, osteoblasts and adipocytes. The Quantum was able to generate the target cell number of 2.0 × 108 cells in an average of 9 fewer days and in half the number of passages required during flask-based expansion. We estimated that the Quantum would involve 133 open procedures versus 54,400 in flasks when manufacturing for a clinical trial. Quantum-expanded MSCs infused into an ischemic stroke rat model were therapeutically active.ConclusionsThe Quantum is a novel method of generating high numbers of MSCs in less time and at lower passages when compared with flasks. In the Quantum, the risk of contamination is substantially reduced because of the substantial decrease in open procedures. 相似文献